ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07834
  4. Cited By
Safely Probabilistically Complete Real-Time Planning and Exploration in
  Unknown Environments
v1v2v3 (latest)

Safely Probabilistically Complete Real-Time Planning and Exploration in Unknown Environments

19 November 2018
David Fridovich-Keil
J. F. Fisac
Claire Tomlin
ArXiv (abs)PDFHTML

Papers citing "Safely Probabilistically Complete Real-Time Planning and Exploration in Unknown Environments"

2 / 2 papers shown
Title
FaSTrack: a Modular Framework for Real-Time Motion Planning and
  Guaranteed Safe Tracking
FaSTrack: a Modular Framework for Real-Time Motion Planning and Guaranteed Safe Tracking
Mo Chen
Sylvia Herbert
Haimin Hu
Ye Pu
J. F. Fisac
Somil Bansal
Soojean Han
Claire Tomlin
140
69
0
14 Feb 2021
An Efficient Reachability-Based Framework for Provably Safe Autonomous
  Navigation in Unknown Environments
An Efficient Reachability-Based Framework for Provably Safe Autonomous Navigation in Unknown Environments
Andrea V. Bajcsy
Somil Bansal
Eli Bronstein
Varun Tolani
Claire Tomlin
129
96
0
01 May 2019
1