Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09300
Cited By
Strength in Numbers: Trading-off Robustness and Computation via Adversarially-Trained Ensembles
22 November 2018
Edward Grefenstette
Robert Stanforth
Brendan O'Donoghue
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Strength in Numbers: Trading-off Robustness and Computation via Adversarially-Trained Ensembles"
8 / 8 papers shown
Title
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
270
0
09 Nov 2021
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
30
66
0
26 Jul 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
269
0
02 Mar 2021
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
19
11
0
21 Sep 2020
Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension
Max Bartolo
A. Roberts
Johannes Welbl
Sebastian Riedel
Pontus Stenetorp
AAML
26
167
0
02 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
264
3,110
0
04 Nov 2016
1