Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09720
Cited By
Representer Point Selection for Explaining Deep Neural Networks
23 November 2018
Chih-Kuan Yeh
Joon Sik Kim
Ian En-Hsu Yen
Pradeep Ravikumar
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Representer Point Selection for Explaining Deep Neural Networks"
50 / 59 papers shown
Title
Federated learning, ethics, and the double black box problem in medical AI
Joshua Hatherley
Anders Søgaard
Angela Ballantyne
Ruben Pauwels
FedML
58
0
0
29 Apr 2025
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
Most Influential Subset Selection: Challenges, Promises, and Beyond
Yuzheng Hu
Pingbang Hu
Han Zhao
Jiaqi W. Ma
TDI
142
2
0
10 Jan 2025
Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
Jinxu Lin
Linwei Tao
Minjing Dong
Chang Xu
TDI
44
2
0
24 Oct 2024
Data Quality Control in Federated Instruction-tuning of Large Language Models
Yaxin Du
Guangyi Liu
Fengting Yuchi
W. Zhao
Jingjing Qu
Yanjie Wang
Siheng Chen
ALM
FedML
56
0
0
15 Oct 2024
dattri
\texttt{dattri}
dattri
: A Library for Efficient Data Attribution
Junwei Deng
Ting-Wei Li
Shiyuan Zhang
Shixuan Liu
Yijun Pan
Hao Huang
Xinhe Wang
Pingbang Hu
Xingjian Zhang
Jiaqi W. Ma
TDI
42
3
0
06 Oct 2024
Influence-oriented Personalized Federated Learning
Yue Tan
Guodong Long
Jing Jiang
Chengqi Zhang
FedML
35
0
0
04 Oct 2024
Efficient Ensembles Improve Training Data Attribution
Junwei Deng
Ting-Wei Li
Shichang Zhang
Jiaqi Ma
TDI
35
2
0
27 May 2024
Data-centric Prediction Explanation via Kernelized Stein Discrepancy
Mahtab Sarvmaili
Hassan Sajjad
Ga Wu
36
1
0
22 Mar 2024
I-CEE: Tailoring Explanations of Image Classification Models to User Expertise
Yao Rong
Peizhu Qian
Vaibhav Unhelkar
Enkelejda Kasneci
34
0
0
19 Dec 2023
Intriguing Properties of Data Attribution on Diffusion Models
Xiaosen Zheng
Tianyu Pang
Chao Du
Jing Jiang
Min Lin
TDI
34
20
1
01 Nov 2023
Natural Example-Based Explainability: a Survey
Antonin Poché
Lucas Hervier
M. Bakkay
XAI
31
12
0
05 Sep 2023
Learning with Explanation Constraints
Rattana Pukdee
Dylan Sam
J. Zico Kolter
Maria-Florina Balcan
Pradeep Ravikumar
FAtt
32
6
0
25 Mar 2023
Simfluence: Modeling the Influence of Individual Training Examples by Simulating Training Runs
Kelvin Guu
Albert Webson
Ellie Pavlick
Lucas Dixon
Ian Tenney
Tolga Bolukbasi
TDI
70
33
0
14 Mar 2023
Which Experiences Are Influential for Your Agent? Policy Iteration with Turn-over Dropout
Takuya Hiraoka
Takashi Onishi
Yoshimasa Tsuruoka
OffRL
29
0
0
26 Jan 2023
Rationalizing Predictions by Adversarial Information Calibration
Lei Sha
Oana-Maria Camburu
Thomas Lukasiewicz
27
4
0
15 Jan 2023
Contrastive Error Attribution for Finetuned Language Models
Faisal Ladhak
Esin Durmus
Tatsunori Hashimoto
HILM
32
9
0
21 Dec 2022
Data-Efficient Finetuning Using Cross-Task Nearest Neighbors
Hamish Ivison
Noah A. Smith
Hannaneh Hajishirzi
Pradeep Dasigi
35
20
0
01 Dec 2022
Explainability Via Causal Self-Talk
Nicholas A. Roy
Junkyung Kim
Neil C. Rabinowitz
CML
26
7
0
17 Nov 2022
"Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Sunnie S. Y. Kim
E. A. Watkins
Olga Russakovsky
Ruth C. Fong
Andrés Monroy-Hernández
43
108
0
02 Oct 2022
Responsibility: An Example-based Explainable AI approach via Training Process Inspection
Faraz Khadivpour
Arghasree Banerjee
Matthew J. Guzdial
XAI
19
2
0
07 Sep 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
21
36
0
08 Jun 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
22
24
0
05 Jun 2022
ORCA: Interpreting Prompted Language Models via Locating Supporting Data Evidence in the Ocean of Pretraining Data
Xiaochuang Han
Yulia Tsvetkov
24
28
0
25 May 2022
TracInAD: Measuring Influence for Anomaly Detection
Hugo Thimonier
Fabrice Popineau
Arpad Rimmel
Bich-Liên Doan
Fabrice Daniel
TDI
19
6
0
03 May 2022
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy
Zayd Hammoudeh
Daniel Lowd
TDI
27
22
0
30 Apr 2022
Attribute Prototype Network for Any-Shot Learning
Wenjia Xu
Yongqin Xian
Jiuniu Wang
Bernt Schiele
Zeynep Akata
VLM
34
37
0
04 Apr 2022
Label-Free Explainability for Unsupervised Models
Jonathan Crabbé
M. Schaar
FAtt
MILM
24
22
0
03 Mar 2022
PUMA: Performance Unchanged Model Augmentation for Training Data Removal
Ga Wu
Masoud Hashemi
C. Srinivasa
MU
17
69
0
02 Mar 2022
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
42
26
0
25 Feb 2022
First is Better Than Last for Language Data Influence
Chih-Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
TDI
34
20
0
24 Feb 2022
Datamodels: Predicting Predictions from Training Data
Andrew Ilyas
Sung Min Park
Logan Engstrom
Guillaume Leclerc
A. Madry
TDI
47
131
0
01 Feb 2022
Identifying a Training-Set Attack's Target Using Renormalized Influence Estimation
Zayd Hammoudeh
Daniel Lowd
TDI
24
28
0
25 Jan 2022
Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies
Vivian Lai
Chacha Chen
Q. V. Liao
Alison Smith-Renner
Chenhao Tan
33
186
0
21 Dec 2021
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
47
4
0
18 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
33
91
0
06 Dec 2021
Revisiting Methods for Finding Influential Examples
Karthikeyan K
Anders Søgaard
TDI
16
30
0
08 Nov 2021
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
18
37
0
28 Oct 2021
Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates
Xiaochuang Han
Yulia Tsvetkov
TDI
31
30
0
07 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
Influence-guided Data Augmentation for Neural Tensor Completion
Sejoon Oh
Sungchul Kim
Ryan A. Rossi
Srijan Kumar
28
10
0
23 Aug 2021
Combining Feature and Instance Attribution to Detect Artifacts
Pouya Pezeshkpour
Sarthak Jain
Sameer Singh
Byron C. Wallace
TDI
18
43
0
01 Jul 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
31
17
0
09 Jun 2021
Explaining the Road Not Taken
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
XAI
27
9
0
27 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
32
29
0
10 Mar 2021
Input Similarity from the Neural Network Perspective
Guillaume Charpiat
N. Girard
Loris Felardos
Y. Tarabalka
32
67
0
10 Feb 2021
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
18
42
0
07 Feb 2021
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
83
262
0
03 Dec 2020
1
2
Next