ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.09720
  4. Cited By
Representer Point Selection for Explaining Deep Neural Networks

Representer Point Selection for Explaining Deep Neural Networks

23 November 2018
Chih-Kuan Yeh
Joon Sik Kim
Ian En-Hsu Yen
Pradeep Ravikumar
    TDI
ArXivPDFHTML

Papers citing "Representer Point Selection for Explaining Deep Neural Networks"

50 / 59 papers shown
Title
Federated learning, ethics, and the double black box problem in medical AI
Federated learning, ethics, and the double black box problem in medical AI
Joshua Hatherley
Anders Søgaard
Angela Ballantyne
Ruben Pauwels
FedML
58
0
0
29 Apr 2025
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
Most Influential Subset Selection: Challenges, Promises, and Beyond
Most Influential Subset Selection: Challenges, Promises, and Beyond
Yuzheng Hu
Pingbang Hu
Han Zhao
Jiaqi W. Ma
TDI
142
2
0
10 Jan 2025
Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
Jinxu Lin
Linwei Tao
Minjing Dong
Chang Xu
TDI
44
2
0
24 Oct 2024
Data Quality Control in Federated Instruction-tuning of Large Language Models
Data Quality Control in Federated Instruction-tuning of Large Language Models
Yaxin Du
Guangyi Liu
Fengting Yuchi
W. Zhao
Jingjing Qu
Yanjie Wang
Siheng Chen
ALM
FedML
56
0
0
15 Oct 2024
$\texttt{dattri}$: A Library for Efficient Data Attribution
dattri\texttt{dattri}dattri: A Library for Efficient Data Attribution
Junwei Deng
Ting-Wei Li
Shiyuan Zhang
Shixuan Liu
Yijun Pan
Hao Huang
Xinhe Wang
Pingbang Hu
Xingjian Zhang
Jiaqi W. Ma
TDI
42
3
0
06 Oct 2024
Influence-oriented Personalized Federated Learning
Influence-oriented Personalized Federated Learning
Yue Tan
Guodong Long
Jing Jiang
Chengqi Zhang
FedML
35
0
0
04 Oct 2024
Efficient Ensembles Improve Training Data Attribution
Efficient Ensembles Improve Training Data Attribution
Junwei Deng
Ting-Wei Li
Shichang Zhang
Jiaqi Ma
TDI
35
2
0
27 May 2024
Data-centric Prediction Explanation via Kernelized Stein Discrepancy
Data-centric Prediction Explanation via Kernelized Stein Discrepancy
Mahtab Sarvmaili
Hassan Sajjad
Ga Wu
36
1
0
22 Mar 2024
I-CEE: Tailoring Explanations of Image Classification Models to User
  Expertise
I-CEE: Tailoring Explanations of Image Classification Models to User Expertise
Yao Rong
Peizhu Qian
Vaibhav Unhelkar
Enkelejda Kasneci
34
0
0
19 Dec 2023
Intriguing Properties of Data Attribution on Diffusion Models
Intriguing Properties of Data Attribution on Diffusion Models
Xiaosen Zheng
Tianyu Pang
Chao Du
Jing Jiang
Min Lin
TDI
34
20
1
01 Nov 2023
Natural Example-Based Explainability: a Survey
Natural Example-Based Explainability: a Survey
Antonin Poché
Lucas Hervier
M. Bakkay
XAI
31
12
0
05 Sep 2023
Learning with Explanation Constraints
Learning with Explanation Constraints
Rattana Pukdee
Dylan Sam
J. Zico Kolter
Maria-Florina Balcan
Pradeep Ravikumar
FAtt
32
6
0
25 Mar 2023
Simfluence: Modeling the Influence of Individual Training Examples by
  Simulating Training Runs
Simfluence: Modeling the Influence of Individual Training Examples by Simulating Training Runs
Kelvin Guu
Albert Webson
Ellie Pavlick
Lucas Dixon
Ian Tenney
Tolga Bolukbasi
TDI
70
33
0
14 Mar 2023
Which Experiences Are Influential for Your Agent? Policy Iteration with Turn-over Dropout
Takuya Hiraoka
Takashi Onishi
Yoshimasa Tsuruoka
OffRL
29
0
0
26 Jan 2023
Rationalizing Predictions by Adversarial Information Calibration
Rationalizing Predictions by Adversarial Information Calibration
Lei Sha
Oana-Maria Camburu
Thomas Lukasiewicz
27
4
0
15 Jan 2023
Contrastive Error Attribution for Finetuned Language Models
Contrastive Error Attribution for Finetuned Language Models
Faisal Ladhak
Esin Durmus
Tatsunori Hashimoto
HILM
32
9
0
21 Dec 2022
Data-Efficient Finetuning Using Cross-Task Nearest Neighbors
Data-Efficient Finetuning Using Cross-Task Nearest Neighbors
Hamish Ivison
Noah A. Smith
Hannaneh Hajishirzi
Pradeep Dasigi
35
20
0
01 Dec 2022
Explainability Via Causal Self-Talk
Explainability Via Causal Self-Talk
Nicholas A. Roy
Junkyung Kim
Neil C. Rabinowitz
CML
26
7
0
17 Nov 2022
"Help Me Help the AI": Understanding How Explainability Can Support
  Human-AI Interaction
"Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Sunnie S. Y. Kim
E. A. Watkins
Olga Russakovsky
Ruth C. Fong
Andrés Monroy-Hernández
43
108
0
02 Oct 2022
Responsibility: An Example-based Explainable AI approach via Training
  Process Inspection
Responsibility: An Example-based Explainable AI approach via Training Process Inspection
Faraz Khadivpour
Arghasree Banerjee
Matthew J. Guzdial
XAI
19
2
0
07 Sep 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
Challenges in Applying Explainability Methods to Improve the Fairness of
  NLP Models
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
21
36
0
08 Jun 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
22
24
0
05 Jun 2022
ORCA: Interpreting Prompted Language Models via Locating Supporting Data
  Evidence in the Ocean of Pretraining Data
ORCA: Interpreting Prompted Language Models via Locating Supporting Data Evidence in the Ocean of Pretraining Data
Xiaochuang Han
Yulia Tsvetkov
24
28
0
25 May 2022
TracInAD: Measuring Influence for Anomaly Detection
TracInAD: Measuring Influence for Anomaly Detection
Hugo Thimonier
Fabrice Popineau
Arpad Rimmel
Bich-Liên Doan
Fabrice Daniel
TDI
19
6
0
03 May 2022
Adapting and Evaluating Influence-Estimation Methods for
  Gradient-Boosted Decision Trees
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy
Zayd Hammoudeh
Daniel Lowd
TDI
27
22
0
30 Apr 2022
Attribute Prototype Network for Any-Shot Learning
Attribute Prototype Network for Any-Shot Learning
Wenjia Xu
Yongqin Xian
Jiuniu Wang
Bernt Schiele
Zeynep Akata
VLM
34
37
0
04 Apr 2022
Label-Free Explainability for Unsupervised Models
Label-Free Explainability for Unsupervised Models
Jonathan Crabbé
M. Schaar
FAtt
MILM
24
22
0
03 Mar 2022
PUMA: Performance Unchanged Model Augmentation for Training Data Removal
PUMA: Performance Unchanged Model Augmentation for Training Data Removal
Ga Wu
Masoud Hashemi
C. Srinivasa
MU
17
69
0
02 Mar 2022
Human-Centered Concept Explanations for Neural Networks
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
42
26
0
25 Feb 2022
First is Better Than Last for Language Data Influence
First is Better Than Last for Language Data Influence
Chih-Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
TDI
34
20
0
24 Feb 2022
Datamodels: Predicting Predictions from Training Data
Datamodels: Predicting Predictions from Training Data
Andrew Ilyas
Sung Min Park
Logan Engstrom
Guillaume Leclerc
A. Madry
TDI
47
131
0
01 Feb 2022
Identifying a Training-Set Attack's Target Using Renormalized Influence
  Estimation
Identifying a Training-Set Attack's Target Using Renormalized Influence Estimation
Zayd Hammoudeh
Daniel Lowd
TDI
24
28
0
25 Jan 2022
Towards a Science of Human-AI Decision Making: A Survey of Empirical
  Studies
Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies
Vivian Lai
Chacha Chen
Q. V. Liao
Alison Smith-Renner
Chenhao Tan
33
186
0
21 Dec 2021
GPEX, A Framework For Interpreting Artificial Neural Networks
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
47
4
0
18 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Scaling Up Influence Functions
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
33
91
0
06 Dec 2021
Revisiting Methods for Finding Influential Examples
Revisiting Methods for Finding Influential Examples
Karthikeyan K
Anders Søgaard
TDI
16
30
0
08 Nov 2021
Explaining Latent Representations with a Corpus of Examples
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
18
37
0
28 Oct 2021
Influence Tuning: Demoting Spurious Correlations via Instance
  Attribution and Instance-Driven Updates
Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates
Xiaochuang Han
Yulia Tsvetkov
TDI
31
30
0
07 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
Influence-guided Data Augmentation for Neural Tensor Completion
Influence-guided Data Augmentation for Neural Tensor Completion
Sejoon Oh
Sungchul Kim
Ryan A. Rossi
Srijan Kumar
28
10
0
23 Aug 2021
Combining Feature and Instance Attribution to Detect Artifacts
Combining Feature and Instance Attribution to Detect Artifacts
Pouya Pezeshkpour
Sarthak Jain
Sameer Singh
Byron C. Wallace
TDI
18
43
0
01 Jul 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness,
  and Semantic Evaluation
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
31
17
0
09 Jun 2021
Explaining the Road Not Taken
Explaining the Road Not Taken
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
XAI
27
9
0
27 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
32
29
0
10 Mar 2021
Input Similarity from the Neural Network Perspective
Input Similarity from the Neural Network Perspective
Guillaume Charpiat
N. Girard
Loris Felardos
Y. Tarabalka
32
67
0
10 Feb 2021
Mitigating belief projection in explainable artificial intelligence via
  Bayesian Teaching
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
18
42
0
07 Feb 2021
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
83
262
0
03 Dec 2020
12
Next