ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12231
  4. Cited By
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness

29 November 2018
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
ArXivPDFHTML

Papers citing "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness"

26 / 426 papers shown
Title
Exploring Unlabeled Faces for Novel Attribute Discovery
Exploring Unlabeled Faces for Novel Attribute Discovery
Hyojin Bahng
Sunghyo Chung
Seungjoo Yoo
Jaegul Choo
CVBM
13
12
0
06 Dec 2019
Angular Visual Hardness
Angular Visual Hardness
Beidi Chen
Weiyang Liu
Zhiding Yu
Jan Kautz
Anshumali Shrivastava
Animesh Garg
Anima Anandkumar
AAML
40
51
0
04 Dec 2019
Adversarial Examples in Modern Machine Learning: A Review
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
Pose estimation and bin picking for deformable products
Pose estimation and bin picking for deformable products
Benjamin Joffe
Tevon Walker
Konrad Ahlin
9
12
0
12 Nov 2019
Semantic Object Accuracy for Generative Text-to-Image Synthesis
Semantic Object Accuracy for Generative Text-to-Image Synthesis
Tobias Hinz
Stefan Heinrich
S. Wermter
EGVM
24
158
0
29 Oct 2019
Reducing Domain Gap by Reducing Style Bias
Reducing Domain Gap by Reducing Style Bias
Hyeonseob Nam
HyunJae Lee
Jongchan Park
Wonjun Yoon
Donggeun Yoo
22
61
0
25 Oct 2019
Multimodal Image Outpainting With Regularized Normalized Diversification
Multimodal Image Outpainting With Regularized Normalized Diversification
Lingzhi Zhang
Jiancong Wang
Jianbo Shi
DiffM
8
15
0
25 Oct 2019
Learning the Difference that Makes a Difference with
  Counterfactually-Augmented Data
Learning the Difference that Makes a Difference with Counterfactually-Augmented Data
Divyansh Kaushik
Eduard H. Hovy
Zachary Chase Lipton
CML
9
560
0
26 Sep 2019
A Closer Look at Domain Shift for Deep Learning in Histopathology
A Closer Look at Domain Shift for Deep Learning in Histopathology
Karin Stacke
Gabriel Eilertsen
Jonas Unger
Claes Lundström
OOD
10
63
0
25 Sep 2019
Intensity augmentation for domain transfer of whole breast segmentation
  in MRI
Intensity augmentation for domain transfer of whole breast segmentation in MRI
L. Hesse
Grey Kuling
M. Veta
Anne L. Martel
14
5
0
05 Sep 2019
Benchmarking Robustness in Object Detection: Autonomous Driving when
  Winter is Coming
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Claudio Michaelis
Benjamin Mitzkus
Robert Geirhos
E. Rusak
Oliver Bringmann
Alexander S. Ecker
Matthias Bethge
Wieland Brendel
3DPC
19
436
0
17 Jul 2019
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
50
1,417
0
16 Jul 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
27
2,152
0
05 Jul 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
21
204
0
06 Jun 2019
Selective Style Transfer for Text
Selective Style Transfer for Text
Raul Gomez
Ali Furkan Biten
Lluís Gómez
J. Gibert
Marccal Rusinol
Dimosthenis Karatzas
19
17
0
04 Jun 2019
Cross-Domain Transferability of Adversarial Perturbations
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
F. Khan
Fatih Porikli
AAML
25
145
0
28 May 2019
Interpreting Adversarially Trained Convolutional Neural Networks
Interpreting Adversarially Trained Convolutional Neural Networks
Tianyuan Zhang
Zhanxing Zhu
AAML
GAN
FAtt
25
157
0
23 May 2019
Zero-shot Knowledge Transfer via Adversarial Belief Matching
Zero-shot Knowledge Transfer via Adversarial Belief Matching
P. Micaelli
Amos Storkey
17
227
0
23 May 2019
What Do Adversarially Robust Models Look At?
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
16
5
0
19 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
17
374
0
30 Apr 2019
Embodied Visual Recognition
Embodied Visual Recognition
Jianwei Yang
Zhile Ren
Mingze Xu
Xinlei Chen
David J. Crandall
Devi Parikh
Dhruv Batra
32
26
0
09 Apr 2019
Addressing Model Vulnerability to Distributional Shifts over Image
  Transformation Sets
Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
Riccardo Volpi
Vittorio Murino
31
29
0
28 Mar 2019
Deep segmentation networks predict survival of non-small cell lung
  cancer
Deep segmentation networks predict survival of non-small cell lung cancer
Stephen Seung-Yeob Baek
Yusen He
B. Allen
John Buatti
Brian J. Smith
...
S. Seyedin
M. Gannon
Katherine R. Cabel
Yusung Kim
Xiaodong Wu
6
82
0
26 Mar 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
22
318
0
29 Jan 2019
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep
  Convolutional Networks
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
19
67
0
30 Sep 2018
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
10
15
0
08 Sep 2017
Previous
123456789