ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12359
  4. Cited By
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

29 November 2018
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
    OOD
ArXivPDFHTML

Papers citing "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations"

50 / 358 papers shown
Title
Learning from Demonstration with Weakly Supervised Disentanglement
Learning from Demonstration with Weakly Supervised Disentanglement
Yordan V. Hristov
S. Ramamoorthy
DRL
27
9
0
16 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Convolutional Generation of Textured 3D Meshes
Convolutional Generation of Textured 3D Meshes
Dario Pavllo
Graham Spinks
Thomas Hofmann
Marie-Francine Moens
Aurelien Lucchi
19
62
0
13 Jun 2020
What Matters In On-Policy Reinforcement Learning? A Large-Scale
  Empirical Study
What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
Marcin Andrychowicz
Anton Raichuk
Piotr Stańczyk
Manu Orsini
Sertan Girgin
...
M. Geist
Olivier Pietquin
Marcin Michalski
Sylvain Gelly
Olivier Bachem
OffRL
31
214
0
10 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
43
46
0
09 Jun 2020
High-Fidelity Audio Generation and Representation Learning with Guided
  Adversarial Autoencoder
High-Fidelity Audio Generation and Representation Learning with Guided Adversarial Autoencoder
Kazi Nazmul Haque
R. Rana
Björn W Schuller
DRL
26
12
0
01 Jun 2020
S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement
  and Data Generation
S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation
Yizhe Zhu
Martin Renqiang Min
Asim Kadav
H. Graf
CoGe
DRL
32
95
0
23 May 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
32
83
0
18 May 2020
Face Identity Disentanglement via Latent Space Mapping
Face Identity Disentanglement via Latent Space Mapping
Yotam Nitzan
Amit H. Bermano
Yangyan Li
Daniel Cohen-Or
CVBM
CoGe
DRL
30
16
0
15 May 2020
Towards Efficient Processing and Learning with Spikes: New Approaches
  for Multi-Spike Learning
Towards Efficient Processing and Learning with Spikes: New Approaches for Multi-Spike Learning
Qiang Yu
Shenglan Li
Huajin Tang
Longbiao Wang
J. Dang
Kay Chen Tan
27
10
0
02 May 2020
Image Captioning through Image Transformer
Image Captioning through Image Transformer
Sen He
Wentong Liao
Hamed R. Tavakoli
M. Yang
Bodo Rosenhahn
N. Pugeault
ViT
36
91
0
29 Apr 2020
A Deeper Look at the Unsupervised Learning of Disentangled
  Representations in $β$-VAE from the Perspective of Core Object
  Recognition
A Deeper Look at the Unsupervised Learning of Disentangled Representations in βββ-VAE from the Perspective of Core Object Recognition
Harshvardhan Digvijay Sikka
OCL
OOD
BDL
DRL
27
1
0
25 Apr 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Lisa Lee
Benjamin Eysenbach
Ruslan Salakhutdinov
S. Gu
Chelsea Finn
SSL
22
26
0
06 Apr 2020
A theory of independent mechanisms for extrapolation in generative
  models
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
20
25
0
01 Apr 2020
How Useful is Self-Supervised Pretraining for Visual Tasks?
How Useful is Self-Supervised Pretraining for Visual Tasks?
Alejandro Newell
Jia Deng
SSL
25
136
0
31 Mar 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
Generalizable semi-supervised learning method to estimate mass from
  sparsely annotated images
Generalizable semi-supervised learning method to estimate mass from sparsely annotated images
Muhammad K. A. Hamdan
D. Rover
Matthew J. Darr
John Just
25
7
0
05 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Fully-hierarchical fine-grained prosody modeling for interpretable
  speech synthesis
Fully-hierarchical fine-grained prosody modeling for interpretable speech synthesis
Guangzhi Sun
Yu Zhang
Ron J. Weiss
Yuanbin Cao
Heiga Zen
Yonghui Wu
16
130
0
06 Feb 2020
Evaluating Weakly Supervised Object Localization Methods Right
Evaluating Weakly Supervised Object Localization Methods Right
Junsuk Choe
Seong Joon Oh
Seungho Lee
Sanghyuk Chun
Zeynep Akata
Hyunjung Shim
WSOL
303
186
0
21 Jan 2020
DDSP: Differentiable Digital Signal Processing
DDSP: Differentiable Digital Signal Processing
Jesse Engel
Lamtharn Hantrakul
Chenjie Gu
Adam Roberts
DiffM
96
373
0
14 Jan 2020
Deep Automodulators
Deep Automodulators
Ari Heljakka
Wenshuai Zhao
Arno Solin
Arno Solin
36
5
0
21 Dec 2019
Triple Generative Adversarial Networks
Triple Generative Adversarial Networks
Chongxuan Li
Kun Xu
Jiashuo Liu
Jun Zhu
Bo Zhang
GAN
33
41
0
20 Dec 2019
Mixed-curvature Variational Autoencoders
Mixed-curvature Variational Autoencoders
Ondrej Skopek
O. Ganea
Gary Bécigneul
CML
DRL
BDL
30
101
0
19 Nov 2019
Empirical Study of Off-Policy Policy Evaluation for Reinforcement
  Learning
Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning
Cameron Voloshin
Hoang Minh Le
Nan Jiang
Yisong Yue
OffRL
30
152
0
15 Nov 2019
Rate-Regularization and Generalization in VAEs
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan-Willem van de Meent
DRL
38
7
0
11 Nov 2019
Leveraging directed causal discovery to detect latent common causes
Leveraging directed causal discovery to detect latent common causes
Ciarán M. Gilligan-Lee
Chris Hart
Jonathan G. Richens
Saurabh Johri
CML
31
16
0
22 Oct 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
56
136
0
22 Oct 2019
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
How a minimal learning agent can infer the existence of unobserved
  variables in a complex environment
How a minimal learning agent can infer the existence of unobserved variables in a complex environment
K. Ried
B. Eva
Thomas Müller
H. Briegel
17
15
0
15 Oct 2019
A Large-scale Study of Representation Learning with the Visual Task
  Adaptation Benchmark
A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark
Xiaohua Zhai
J. Puigcerver
Alexander Kolesnikov
P. Ruyssen
C. Riquelme
...
Michael Tschannen
Marcin Michalski
Olivier Bousquet
Sylvain Gelly
N. Houlsby
SSL
30
426
0
01 Oct 2019
LAVAE: Disentangling Location and Appearance
LAVAE: Disentangling Location and Appearance
Andrea Dittadi
Ole Winther
OCL
BDL
DRL
20
6
0
25 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
Domain-Agnostic Learning with Anatomy-Consistent Embedding for
  Cross-Modality Liver Segmentation
Domain-Agnostic Learning with Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation
Junlin Yang
Nicha Dvornek
Fan Zhang
Juntang Zhuang
Julius Chapiro
Mingde Lin
James S. Duncan
FedML
OOD
MedIm
34
17
0
27 Aug 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
21
93
0
26 Aug 2019
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact
  Reduction
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
Haofu Liao
Wei-An Lin
S. Kevin Zhou
Jiebo Luo
MedIm
OOD
33
148
0
03 Aug 2019
Extracting Interpretable Physical Parameters from Spatiotemporal Systems
  using Unsupervised Learning
Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning
Peter Y. Lu
Samuel Kim
Marin Soljacic
AI4CE
22
59
0
13 Jul 2019
Demystifying Inter-Class Disentanglement
Demystifying Inter-Class Disentanglement
Aviv Gabbay
Yedid Hoshen
DRL
22
56
0
27 Jun 2019
Generalization to Novel Objects using Prior Relational Knowledge
Generalization to Novel Objects using Prior Relational Knowledge
V. Vijay
Abhinav Ganesh
Hanlin Tang
Arjun K. Bansal
GNN
19
6
0
26 Jun 2019
Unsupervised State Representation Learning in Atari
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Yoshua Bengio
Marc-Alexandre Côté
R. Devon Hjelm
SSL
44
254
0
19 Jun 2019
Explicit Disentanglement of Appearance and Perspective in Generative
  Models
Explicit Disentanglement of Appearance and Perspective in Generative Models
N. Detlefsen
Søren Hauberg
CoGe
DRL
30
47
0
11 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
134
0
07 Jun 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OOD
DRL
16
78
0
29 May 2019
Overlearning Reveals Sensitive Attributes
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
19
148
0
28 May 2019
OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal
  Regularization
OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal Regularization
Bingchen Liu
Yizhe Zhu
Zuohui Fu
Gerard de Melo
Ahmed Elgammal
CML
9
42
0
26 May 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
33
198
0
24 May 2019
Improving Discrete Latent Representations With Differentiable
  Approximation Bridges
Improving Discrete Latent Representations With Differentiable Approximation Bridges
Jason Ramapuram
Russ Webb
DRL
19
9
0
09 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
34
123
0
03 May 2019
Previous
12345678
Next