Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.00076
Cited By
Scalable Graph Learning for Anti-Money Laundering: A First Look
30 November 2018
Mark Weber
Jie Chen
Toyotaro Suzumura
A. Pareja
Tengfei Ma
H. Kanezashi
Tim Kaler
C. E. Leiserson
Tao B. Schardl
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Graph Learning for Anti-Money Laundering: A First Look"
9 / 9 papers shown
Title
2SFGL: A Simple And Robust Protocol For Graph-Based Fraud Detection
Zhirui Pan
Guangzhong Wang
Zhaoning Li
Lifeng Chen
Yang Bian
Zhongyuan Lai
FedML
27
2
0
12 Oct 2023
The GANfather: Controllable generation of malicious activity to improve defence systems
Ricardo Pereira
Jacopo Bono
João Tiago Ascensão
David Oliveira Aparício
Pedro Ribeiro
P. Bizarro
AAML
21
2
0
25 Jul 2023
Catch Me If You Can: Semi-supervised Graph Learning for Spotting Money Laundering
Md. Rezaul Karim
Felix Hermsen
S. Chala
Paola de Perthuis
Avikarsha Mandal
19
4
0
23 Feb 2023
Machine Learning in Transaction Monitoring: The Prospect of xAI
Julie Gerlings
Ioanna D. Constantiou
17
2
0
14 Oct 2022
Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application of Machine Learning-based Forensics
Nadia Pocher
Mirko Zichichi
Fabio Merizzi
Muhammad Shafiq
S. Ferretti
21
32
0
07 Jun 2022
Fighting Money Laundering with Statistics and Machine Learning
R. Jensen
Alexandros Iosifidis
28
13
0
11 Jan 2022
Graph Computing for Financial Crime and Fraud Detection: Trends, Challenges and Outlook
Eren Kurshan
Hongda Shen
GNN
21
32
0
02 Mar 2021
Financial Crime & Fraud Detection Using Graph Computing: Application Considerations & Outlook
Eren Kurshan
Honda Shen
Haojie Yu
GNN
FaML
32
26
0
02 Mar 2021
Towards Federated Graph Learning for Collaborative Financial Crimes Detection
Toyotaro Suzumura
Yi Zhou
Natahalie Barcardo
Guangann Ye
Keith Houck
...
Yuji Watanabe
Pablo S. Loyola
Daniel Klyashtorny
Heiko Ludwig
Kumar Bhaskaran
FedML
25
70
0
19 Sep 2019
1