ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.00564
  4. Cited By
Split learning for health: Distributed deep learning without sharing raw
  patient data

Split learning for health: Distributed deep learning without sharing raw patient data

3 December 2018
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
    FedML
ArXivPDFHTML

Papers citing "Split learning for health: Distributed deep learning without sharing raw patient data"

43 / 343 papers shown
Title
NoPeek: Information leakage reduction to share activations in
  distributed deep learning
NoPeek: Information leakage reduction to share activations in distributed deep learning
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
21
84
0
20 Aug 2020
SplitNN-driven Vertical Partitioning
SplitNN-driven Vertical Partitioning
Iker Ceballos
Vivek Sharma
Eduardo Mugica
Abhishek Singh
Alberto Roman
Praneeth Vepakomma
Ramesh Raskar
21
72
0
07 Aug 2020
Communication-Efficient and Distributed Learning Over Wireless Networks:
  Principles and Applications
Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications
Jihong Park
S. Samarakoon
Anis Elgabli
Joongheon Kim
M. Bennis
Seong-Lyun Kim
Mérouane Debbah
34
161
0
06 Aug 2020
Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge
Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge
Chaoyang He
M. Annavaram
A. Avestimehr
FedML
13
23
0
28 Jul 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
David B. Blumenthal
T. Kacprowski
M. List
...
Harald H. H. W. Schmidt
A. Schwalber
Christof Tschohl
Andrea Wohner
Jan Baumbach
18
59
0
22 Jul 2020
Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive
  Review
Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review
Yansong Gao
Bao Gia Doan
Zhi-Li Zhang
Siqi Ma
Jiliang Zhang
Anmin Fu
Surya Nepal
Hyoungshick Kim
AAML
30
220
0
21 Jul 2020
PrivColl: Practical Privacy-Preserving Collaborative Machine Learning
PrivColl: Practical Privacy-Preserving Collaborative Machine Learning
Yanjun Zhang
Guangdong Bai
Xue Li
Caitlin I. Curtis
Cheng Chen
R. Ko
FedML
6
32
0
14 Jul 2020
The OARF Benchmark Suite: Characterization and Implications for
  Federated Learning Systems
The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems
Sixu Hu
Yuan N. Li
Xu Liu
Yue Liu
Zhaomin Wu
Bingsheng He
FedML
18
53
0
14 Jun 2020
Incentive Mechanism Design for Resource Sharing in Collaborative Edge
  Learning
Incentive Mechanism Design for Resource Sharing in Collaborative Edge Learning
Wei Yang Bryan Lim
Jer Shyuan Ng
Zehui Xiong
Dusit Niyato
Cyril Leung
C. Miao
Qiang Yang
FedML
6
25
0
31 May 2020
Synthetic Learning: Learn From Distributed Asynchronized Discriminator
  GAN Without Sharing Medical Image Data
Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without Sharing Medical Image Data
Qi Chang
Hui Qu
Yikai Zhang
M. Sabuncu
Chao Chen
Tong Zhang
Dimitris N. Metaxas
MedIm
26
78
0
29 May 2020
Vertically Federated Graph Neural Network for Privacy-Preserving Node
  Classification
Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification
Chaochao Chen
Jun Zhou
Longfei Zheng
Huiwen Wu
Lingjuan Lyu
Jia Wu
Bingzhe Wu
Ziqi Liu
L. xilinx Wang
Xiaolin Zheng
FedML
18
96
0
25 May 2020
A Federated Learning Framework for Healthcare IoT devices
A Federated Learning Framework for Healthcare IoT devices
Binhang Yuan
Song Ge
Wenhui Xing
FedML
OOD
15
64
0
07 May 2020
6G White Paper on Edge Intelligence
6G White Paper on Edge Intelligence
Ella Peltonen
M. Bennis
M. Capobianco
Merouane Debbah
Aaron Yi Ding
...
S. Samarakoon
K. Seppänen
Paweł Sroka
Sasu Tarkoma
Tingting Yang
12
137
0
30 Apr 2020
Privacy in Deep Learning: A Survey
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
11
135
0
25 Apr 2020
SplitFed: When Federated Learning Meets Split Learning
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
17
567
0
25 Apr 2020
Apps Gone Rogue: Maintaining Personal Privacy in an Epidemic
Apps Gone Rogue: Maintaining Personal Privacy in an Epidemic
Ramesh Raskar
Isabel Schunemann
Rachel Barbar
Kristen Vilcans
J. Gray
...
Greg Storm
J. Werner
Ayush Chopra
Gauri Gupta
Vivek Sharma
26
149
0
19 Mar 2020
Can We Use Split Learning on 1D CNN Models for Privacy Preserving
  Training?
Can We Use Split Learning on 1D CNN Models for Privacy Preserving Training?
Sharif Abuadbba
Kyuyeon Kim
Minki Kim
Chandra Thapa
S. Çamtepe
Yansong Gao
Hyoungshick Kim
Surya Nepal
FedML
8
122
0
16 Mar 2020
Industrial Scale Privacy Preserving Deep Neural Network
Industrial Scale Privacy Preserving Deep Neural Network
Longfei Zheng
Chaochao Chen
Yingting Liu
Bingzhe Wu
Xibin Wu
Li Wang
Lei Wang
Jun Zhou
Shuang Yang
FedML
6
21
0
11 Mar 2020
Privacy-preserving Learning via Deep Net Pruning
Privacy-preserving Learning via Deep Net Pruning
Yangsibo Huang
Yushan Su
S. S. Ravi
Zhao-quan Song
Sanjeev Arora
K. Li
MLT
14
16
0
04 Mar 2020
Secure and Robust Machine Learning for Healthcare: A Survey
Secure and Robust Machine Learning for Healthcare: A Survey
A. Qayyum
Junaid Qadir
Muhammad Bilal
Ala I. Al-Fuqaha
AAML
OOD
45
374
0
21 Jan 2020
Privacy-Preserving Deep Learning Computation for Geo-Distributed Medical
  Big-Data Platforms
Privacy-Preserving Deep Learning Computation for Geo-Distributed Medical Big-Data Platforms
Joohyung Jeon
Junhui Kim
Joongheon Kim
Kwangsoo Kim
Aziz Mohaisen
Jong-Kook Kim
FedML
9
25
0
09 Jan 2020
Split Learning for collaborative deep learning in healthcare
Split Learning for collaborative deep learning in healthcare
M. Poirot
Praneeth Vepakomma
Ken Chang
Jayashree Kalpathy-Cramer
Rajiv Gupta
Ramesh Raskar
FedML
OOD
16
135
0
27 Dec 2019
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
74
6,069
0
10 Dec 2019
Federated Learning with Personalization Layers
Federated Learning with Personalization Layers
Manoj Ghuhan Arivazhagan
V. Aggarwal
Aaditya Kumar Singh
Sunav Choudhary
FedML
14
810
0
02 Dec 2019
Artificial Intelligence in Glioma Imaging: Challenges and Advances
Artificial Intelligence in Glioma Imaging: Challenges and Advances
Weina Jin
M. Fatehi
Kumar Abhishek
Mayur Mallya
B. Toyota
Ghassan Hamarneh
25
42
0
28 Nov 2019
Federated and Differentially Private Learning for Electronic Health
  Records
Federated and Differentially Private Learning for Electronic Health Records
Stephen R. Pfohl
Andrew M. Dai
Katherine A. Heller
OOD
FedML
14
49
0
13 Nov 2019
Orthogonal Gradient Descent for Continual Learning
Orthogonal Gradient Descent for Continual Learning
Mehrdad Farajtabar
Navid Azizan
Alex Mott
Ang Li
CLL
22
348
0
15 Oct 2019
ExpertMatcher: Automating ML Model Selection for Clients using Hidden
  Representations
ExpertMatcher: Automating ML Model Selection for Clients using Hidden Representations
Vivek Sharma
Praneeth Vepakomma
Tristan Swedish
Kenglun Chang
Jayashree Kalpathy-Cramer
Ramesh Raskar
8
11
0
09 Oct 2019
ExpertMatcher: Automating ML Model Selection for Users in Resource
  Constrained Countries
ExpertMatcher: Automating ML Model Selection for Users in Resource Constrained Countries
Vivek Sharma
Praneeth Vepakomma
Tristan Swedish
Kenglun Chang
Jayashree Kalpathy-Cramer
Ramesh Raskar
18
7
0
05 Oct 2019
Maximal adversarial perturbations for obfuscation: Hiding certain
  attributes while preserving rest
Maximal adversarial perturbations for obfuscation: Hiding certain attributes while preserving rest
I. Ilanchezian
Praneeth Vepakomma
Abhishek Singh
O. Gupta
G. N. S. Prasanna
Ramesh Raskar
AAML
6
2
0
27 Sep 2019
Model Pruning Enables Efficient Federated Learning on Edge Devices
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
30
444
0
26 Sep 2019
Detailed comparison of communication efficiency of split learning and
  federated learning
Detailed comparison of communication efficiency of split learning and federated learning
Abhishek Singh
Praneeth Vepakomma
O. Gupta
Ramesh Raskar
FedML
11
188
0
18 Sep 2019
From Server-Based to Client-Based Machine Learning: A Comprehensive
  Survey
From Server-Based to Client-Based Machine Learning: A Comprehensive Survey
Renjie Gu
Chaoyue Niu
Fan Wu
Guihai Chen
Chun Hu
Chengfei Lyu
Zhihua Wu
25
25
0
18 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
25
4,414
0
21 Aug 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for
  Data Privacy and Protection
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
37
968
0
23 Jul 2019
Reproducibility in Machine Learning for Health
Reproducibility in Machine Learning for Health
Matthew B. A. McDermott
Shirly Wang
N. Marinsek
Rajesh Ranganath
Marzyeh Ghassemi
L. Foschini
AI4TS
6
50
0
02 Jul 2019
Data Markets to support AI for All: Pricing, Valuation and Governance
Data Markets to support AI for All: Pricing, Valuation and Governance
Ramesh Raskar
Praneeth Vepakomma
Tristan Swedish
Aalekh Sharan
TDI
13
16
0
14 May 2019
Automatic end-to-end De-identification: Is high accuracy the only
  metric?
Automatic end-to-end De-identification: Is high accuracy the only metric?
Vithya Yogarajan
Bernhard Pfahringer
Michael Mayo
8
24
0
27 Jan 2019
No Peek: A Survey of private distributed deep learning
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
22
99
0
08 Dec 2018
Wireless Network Intelligence at the Edge
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
19
518
0
07 Dec 2018
An overview of deep learning in medical imaging focusing on MRI
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
6
1,605
0
25 Nov 2018
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
295
10,618
0
19 Feb 2017
Previous
1234567