ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01736
  4. Cited By
Machine Learning of coarse-grained Molecular Dynamics Force Fields
v1v2v3 (latest)

Machine Learning of coarse-grained Molecular Dynamics Force Fields

4 December 2018
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Machine Learning of coarse-grained Molecular Dynamics Force Fields"

50 / 73 papers shown
Title
Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics
Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics
Fang Sun
Zijie Huang
Haixin Wang
Yadi Cao
Xiao Luo
Wei Wang
Yizhou Sun
AI4CE
96
0
0
01 Jul 2025
chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
Paul Fuchs
Weilong Chen
Stephan Thaler
Julija Zavadlav
52
0
0
04 Jun 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
85
0
0
29 Apr 2025
Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers
Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers
Markus J. Buehler
AI4CE
147
3
0
04 Jan 2025
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
268
12
0
16 Dec 2024
Implicit Delta Learning of High Fidelity Neural Network Potentials
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
153
1
0
08 Dec 2024
Learning Macroscopic Dynamics from Partial Microscopic Observations
Learning Macroscopic Dynamics from Partial Microscopic Observations
Mengyi Chen
Qianxiao Li
AI4CE
71
0
0
31 Oct 2024
EquiJump: Protein Dynamics Simulation via SO(3)-Equivariant Stochastic
  Interpolants
EquiJump: Protein Dynamics Simulation via SO(3)-Equivariant Stochastic Interpolants
Allan dos Santos Costa
Ilan Mitnikov
Franco Pellegrini
Ameya Daigavane
Mario Geiger
Zhonglin Cao
Karsten Kreis
Tess E. Smidt
E. Küçükbenli
J. Jacobson
67
1
0
12 Oct 2024
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein
  Thermodynamics
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics
Antonio Mirarchi
Raúl P. Peláez
Guillem Simeon
Gianni De Fabritiis
91
3
0
26 Sep 2024
On the design space between molecular mechanics and machine learning
  force fields
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
112
5
0
03 Sep 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
Julija Zavadlav
DiffM
162
10
0
28 Aug 2024
Thermodynamic Transferability in Coarse-Grained Force Fields using Graph
  Neural Networks
Thermodynamic Transferability in Coarse-Grained Force Fields using Graph Neural Networks
Emily Shinkle
Aleksandra Pachalieva
Riti Bahl
Sakib Matin
Brendan Gifford
G. Craven
Nicholas Lubbers
63
3
0
17 Jun 2024
Conditional Normalizing Flows for Active Learning of Coarse-Grained
  Molecular Representations
Conditional Normalizing Flows for Active Learning of Coarse-Grained Molecular Representations
Henrik Schopmans
Pascal Friederich
AI4CE
91
2
0
02 Feb 2024
Large Scale Training of Graph Neural Networks for Optimal Markov-Chain
  Partitioning Using the Kemeny Constant
Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant
S. Martino
João Morado
Chenghao Li
Zhenghao Lu
E. Rosta
GNN
18
0
0
22 Dec 2023
Navigating protein landscapes with a machine-learned transferable
  coarse-grained model
Navigating protein landscapes with a machine-learned transferable coarse-grained model
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
...
B. Husic
Ankit Patel
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
84
14
0
27 Oct 2023
Towards equilibrium molecular conformation generation with GFlowNets
Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michal Koziarski
Alex Hernández-García
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alán Aspuru-Guzik
Yoshua Bengio
75
11
0
20 Oct 2023
Score dynamics: scaling molecular dynamics with picoseconds timestep via
  conditional diffusion model
Score dynamics: scaling molecular dynamics with picoseconds timestep via conditional diffusion model
Tim Hsu
Babak Sadigh
Vasily V. Bulatov
Fei Zhou
58
14
0
02 Oct 2023
Overcoming the Barrier of Orbital-Free Density Functional Theory for
  Molecular Systems Using Deep Learning
Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning
He Zhang
Siyuan Liu
Jiacheng You
Chang-Shu Liu
Shuxin Zheng
Ziheng Lu
Tong Wang
Nanning Zheng
Jia Zhang
65
21
0
28 Sep 2023
Latent Representation and Simulation of Markov Processes via Time-Lagged
  Information Bottleneck
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Marco Federici
Patrick Forré
Ryota Tomioka
Bastiaan S. Veeling
51
6
0
13 Sep 2023
DiAMoNDBack: Diffusion-denoising Autoregressive Model for
  Non-Deterministic Backmapping of Cα Protein Traces
DiAMoNDBack: Diffusion-denoising Autoregressive Model for Non-Deterministic Backmapping of Cα Protein Traces
Michael S. Jones
Kirill Shmilovich
Andrew L. Ferguson
DiffM
79
14
0
23 Jul 2023
Top-down machine learning of coarse-grained protein force-fields
Top-down machine learning of coarse-grained protein force-fields
Carles Navarro
Maciej Majewski
Gianni De Fabritiis
AI4CE
96
12
0
20 Jun 2023
Towards Predicting Equilibrium Distributions for Molecular Systems with
  Deep Learning
Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning
Shuxin Zheng
Jiyan He
Chang-Shu Liu
Yu Shi
Ziheng Lu
...
Peiran Jin
Chi Chen
Frank Noé
Haiguang Liu
Tie-Yan Liu
AI4CE
89
41
0
08 Jun 2023
Str2Str: A Score-based Framework for Zero-shot Protein Conformation
  Sampling
Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling
Jiarui Lu
Bozitao Zhong
Zuobai Zhang
Jian Tang
93
32
0
05 Jun 2023
Neural Markov Jump Processes
Neural Markov Jump Processes
Patrick Seifner
Ramses J. Sanchez
BDL
81
8
0
31 May 2023
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
  for Molecular Dynamics
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics
Mathias Jacob Schreiner
Ole Winther
Simon Olsson
OODAI4CE
127
13
0
29 May 2023
FlexVDW: A machine learning approach to account for protein flexibility
  in ligand docking
FlexVDW: A machine learning approach to account for protein flexibility in ligand docking
Patricia Suriana
Joseph M. Paggi
R. Dror
AI4CE
24
1
0
20 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular
  Dynamics
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
70
22
0
14 Feb 2023
Two for One: Diffusion Models and Force Fields for Coarse-Grained
  Molecular Dynamics
Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
Marloes Arts
Victor Garcia Satorras
Chin-Wei Huang
Daniel Zuegner
Marco Federici
C. Clementi
Frank Noé
Robert Pinsler
Rianne van den Berg
DiffM
111
92
0
01 Feb 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
101
21
0
15 Dec 2022
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
73
76
0
14 Dec 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
90
146
0
13 Oct 2022
Developing Machine-Learned Potentials for Coarse-Grained Molecular
  Simulations: Challenges and Pitfalls
Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls
E. Ricci
Georgios Paliouras
V. Karkaletsis
D. Theodorou
Niki Vergadou
AI4CE
54
9
0
26 Sep 2022
Learning Pair Potentials using Differentiable Simulations
Learning Pair Potentials using Differentiable Simulations
Wujie Wang
Zhenghao Wu
Rafael Gómez-Bombarelli
82
26
0
16 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNNAI4CE
122
419
0
05 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
136
95
0
03 Aug 2022
Simulate Time-integrated Coarse-grained Molecular Dynamics with
  Multi-Scale Graph Networks
Simulate Time-integrated Coarse-grained Molecular Dynamics with Multi-Scale Graph Networks
Xiang Fu
T. Xie
Nathan J. Rebello
B. Olsen
Tommi Jaakkola
AI4CE
75
15
0
21 Apr 2022
Automatic Identification of Chemical Moieties
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
69
5
0
30 Mar 2022
Differentiable Matrix Elements with MadJax
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
58
20
0
28 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
125
197
0
05 Feb 2022
Learning Physics-Consistent Particle Interactions
Learning Physics-Consistent Particle Interactions
Zhichao Han
David S. Kammer
Olga Fink
69
7
0
01 Feb 2022
Generative Coarse-Graining of Molecular Conformations
Generative Coarse-Graining of Molecular Conformations
Wujie Wang
Minkai Xu
Chen Cai
Benjamin Kurt Miller
Tess E. Smidt
Yusu Wang
Jian Tang
Rafael Gómez-Bombarelli
66
36
0
28 Jan 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNNAI4CE
70
59
0
06 Dec 2021
Molecular Dynamics Simulations on Cloud Computing and Machine Learning
  Platforms
Molecular Dynamics Simulations on Cloud Computing and Machine Learning Platforms
Prateek Sharma
V. Jadhao
AI4CE
8
10
0
11 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINNAI4CE
63
98
0
02 Nov 2021
Designing Machine Learning Surrogates using Outputs of Molecular
  Dynamics Simulations as Soft Labels
Designing Machine Learning Surrogates using Outputs of Molecular Dynamics Simulations as Soft Labels
J. Kadupitiya
Nasim Anousheh
V. Jadhao
AI4CESyDa
8
0
0
27 Oct 2021
Smooth Normalizing Flows
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
105
55
0
01 Oct 2021
Neural Upscaling from Residue-level Protein Structure Networks to
  Atomistic Structure
Neural Upscaling from Residue-level Protein Structure Networks to Atomistic Structure
Vy T Duong
Elizabeth M. Diessner
Gianmarc Grazioli
Rachel W. Martin
C. Butts
24
5
0
25 Aug 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CEPINN
109
69
0
02 Jul 2021
Learning neural network potentials from experimental data via
  Differentiable Trajectory Reweighting
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
Julija Zavadlav
79
71
0
02 Jun 2021
Accelerated Simulations of Molecular Systems through Learning of their
  Effective Dynamics
Accelerated Simulations of Molecular Systems through Learning of their Effective Dynamics
Pantelis R. Vlachas
Julija Zavadlav
M. Praprotnik
Petros Koumoutsakos
AI4CE
56
3
0
17 Feb 2021
12
Next