ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02609
  4. Cited By
A Framework for Adaptive MCMC Targeting Multimodal Distributions
v1v2 (latest)

A Framework for Adaptive MCMC Targeting Multimodal Distributions

6 December 2018
E. Pompe
Chris Holmes
K. Latuszyñski
ArXiv (abs)PDFHTML

Papers citing "A Framework for Adaptive MCMC Targeting Multimodal Distributions"

40 / 40 papers shown
Title
Branching Stein Variational Gradient Descent for sampling multimodal distributions
Branching Stein Variational Gradient Descent for sampling multimodal distributions
Isaias Banales
Arturo Jaramillo
Heli Ricalde Guerrero
17
0
0
16 Jun 2025
Upper and lower bounds on the subgeometric convergence of adaptive
  Markov chain Monte Carlo
Upper and lower bounds on the subgeometric convergence of adaptive Markov chain Monte Carlo
Austin Brown
Jeffrey S. Rosenthal
103
0
0
26 Nov 2024
On theoretical guarantees and a blessing of dimensionality for nonconvex
  sampling
On theoretical guarantees and a blessing of dimensionality for nonconvex sampling
Martin Chak
101
2
0
12 Nov 2024
On MCMC mixing under unidentified nonparametric models with an
  application to survival predictions under transformation models
On MCMC mixing under unidentified nonparametric models with an application to survival predictions under transformation models
Chong Zhong
Jin Yang
Junshan Shen
Catherine C. Liu
Zhaohai Li
78
0
0
03 Nov 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
121
6
0
25 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Wenlin Chen
Jiajun He
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
126
8
0
16 Oct 2024
An invitation to adaptive Markov chain Monte Carlo convergence theory
An invitation to adaptive Markov chain Monte Carlo convergence theory
Pietari Laitinen
M. Vihola
61
1
0
27 Aug 2024
Adaptive Stereographic MCMC
Adaptive Stereographic MCMC
Cameron Bell
Krzystof Łatuszyński
Gareth O. Roberts
65
1
0
21 Aug 2024
Symmetry-driven embedding of networks in hyperbolic space
Symmetry-driven embedding of networks in hyperbolic space
Simon Lizotte
Jean-Gabriel Young
Antoine Allard
74
1
0
15 Jun 2024
Weak convergence of adaptive Markov chain Monte Carlo
Weak convergence of adaptive Markov chain Monte Carlo
Austin Brown
Jeffrey S. Rosenthal
27
1
0
02 Jun 2024
Repelling-Attracting Hamiltonian Monte Carlo
Repelling-Attracting Hamiltonian Monte Carlo
Siddharth Vishwanath
Hyungsuk Tak
40
0
0
07 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
116
2
0
05 Mar 2024
Almost sure convergence rates of adaptive increasingly rare Markov chain
  Monte Carlo
Almost sure convergence rates of adaptive increasingly rare Markov chain Monte Carlo
Julian Hofstadler
Krzysztof Latuszynski
Gareth O. Roberts
Daniel Rudolf
30
4
0
19 Feb 2024
Diffusive Gibbs Sampling
Diffusive Gibbs Sampling
Jiajun He
Mingtian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
143
11
0
05 Feb 2024
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Leo L. Duan
Anirban Bhattacharya
91
1
0
25 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U
  Sampler and Stochastic Bridge Sampling
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
46
0
0
01 Jan 2024
A Theory of Non-Acyclic Generative Flow Networks
A Theory of Non-Acyclic Generative Flow Networks
Leo Maxime Brunswic
Yinchuan Li
Yushun Xu
Shangling Jui
Lizhuang Ma
100
6
0
23 Dec 2023
Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized
  Stein Discrepancy
Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized Stein Discrepancy
Xingtu Liu
Andrew B. Duncan
Axel Gandy
76
7
0
28 Apr 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
77
4
0
21 Apr 2023
Diverse Policy Optimization for Structured Action Space
Diverse Policy Optimization for Structured Action Space
Wenhao Li
Baoxiang Wang
Shanchao Yang
H. Zha
OffRL
70
1
0
23 Feb 2023
Kernel Stein Discrepancy thinning: a theoretical perspective of
  pathologies and a practical fix with regularization
Kernel Stein Discrepancy thinning: a theoretical perspective of pathologies and a practical fix with regularization
Clément Bénard
B. Staber
Sébastien Da Veiga
82
5
0
31 Jan 2023
Sampling using Adaptive Regenerative Processes
Sampling using Adaptive Regenerative Processes
Hector McKimm
Andi Q. Wang
M. Pollock
Christian P. Robert
Gareth O. Roberts
69
1
0
18 Oct 2022
Approximate Methods for Bayesian Computation
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
41
5
0
06 Oct 2022
Cyclical Kernel Adaptive Metropolis
Cyclical Kernel Adaptive Metropolis
J. Li
Yimeng Zeng
Wen-Ping Guo
25
0
0
29 Jun 2022
Stereographic Markov Chain Monte Carlo
Stereographic Markov Chain Monte Carlo
Jun Yang
K. Latuszyñski
Gareth O. Roberts
82
14
0
24 May 2022
Annealed Leap-Point Sampler for Multimodal Target Distributions
Annealed Leap-Point Sampler for Multimodal Target Distributions
Nicholas G. Tawn
M. Moores
Gareth O. Roberts
68
6
0
24 Dec 2021
The Apogee to Apogee Path Sampler
The Apogee to Apogee Path Sampler
Chris Sherlock
S. Urbas
Matthew Ludkin
82
6
0
15 Dec 2021
GFlowNet Foundations
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
98
240
0
17 Nov 2021
Sampling from multimodal distributions using tempered Hamiltonian
  transitions
Sampling from multimodal distributions using tempered Hamiltonian transitions
Joonha Park
24
2
0
12 Nov 2021
The Ball Pit Algorithm: A Markov Chain Monte Carlo Method Based on Path
  Integrals
The Ball Pit Algorithm: A Markov Chain Monte Carlo Method Based on Path Integrals
Miguel Fudolig
Réka Howard
27
0
0
05 Nov 2021
Local-Global MCMC kernels: the best of both worlds
Local-Global MCMC kernels: the best of both worlds
S. Samsonov
E. Lagutin
Marylou Gabrié
Alain Durmus
A. Naumov
Eric Moulines
59
15
0
04 Nov 2021
Adaptation of the Independent Metropolis-Hastings Sampler with
  Normalizing Flow Proposals
Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals
James A. Brofos
Marylou Gabrié
Marcus A. Brubaker
Roy R. Lederman
50
9
0
25 Oct 2021
Adaptive random neighbourhood informed Markov chain Monte Carlo for
  high-dimensional Bayesian variable Selection
Adaptive random neighbourhood informed Markov chain Monte Carlo for high-dimensional Bayesian variable Selection
Xitong Liang
Samuel Livingstone
Jim Griffin
BDL
70
10
0
22 Oct 2021
Nested Sampling for Non-Gaussian Inference in SLAM Factor Graphs
Nested Sampling for Non-Gaussian Inference in SLAM Factor Graphs
Qiangqiang Huang
Alan Papalia
J. Leonard
72
4
0
22 Sep 2021
LSB: Local Self-Balancing MCMC in Discrete Spaces
LSB: Local Self-Balancing MCMC in Discrete Spaces
Emanuele Sansone
48
10
0
08 Sep 2021
Cauchy Markov Random Field Priors for Bayesian Inversion
Cauchy Markov Random Field Priors for Bayesian Inversion
Neil K. Chada
L. Roininen
Jarkko Suuronen
48
24
0
26 May 2021
Sampling by Divergence Minimization
Sampling by Divergence Minimization
Ameer Dharamshi
V. Ngo
Jeffrey S. Rosenthal
66
4
0
02 May 2021
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Andrea Bertazzi
J. Bierkens
43
10
0
27 Dec 2020
A Metropolis-class sampler for targets with non-convex support
A Metropolis-class sampler for targets with non-convex support
John Moriarty
Jure Vogrinc
Alessandro Zocca
60
5
0
23 May 2019
Scalable Nonparametric Sampling from Multimodal Posteriors with the
  Posterior Bootstrap
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Edwin Fong
Simon Lyddon
Chris Holmes
174
36
0
08 Feb 2019
1