Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.02648
Cited By
Deep Reinforcement Learning and the Deadly Triad
6 December 2018
H. V. Hasselt
Yotam Doron
Florian Strub
Matteo Hessel
Nicolas Sonnerat
Joseph Modayil
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Reinforcement Learning and the Deadly Triad"
50 / 51 papers shown
Title
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets
Zhen Liu
Tim Z. Xiao
Weiyang Liu
Yoshua Bengio
Dinghuai Zhang
123
2
0
10 Dec 2024
DIAR: Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation
Jaehyun Park
Yunho Kim
Sejin Kim
Byung-Jun Lee
Sundong Kim
OffRL
30
1
0
15 Oct 2024
Frequency and Generalisation of Periodic Activation Functions in Reinforcement Learning
Augustine N. Mavor-Parker
Matthew J. Sargent
Caswell Barry
Lewis D. Griffin
Clare Lyle
47
2
0
09 Jul 2024
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
62
15
0
05 Jul 2024
Is Value Functions Estimation with Classification Plug-and-play for Offline Reinforcement Learning?
Denis Tarasov
Kirill Brilliantov
Dmitrii Kharlapenko
OffRL
32
2
0
10 Jun 2024
Multi-agent Reinforcement Learning: A Comprehensive Survey
Dom Huh
Prasant Mohapatra
AI4CE
36
8
0
15 Dec 2023
Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error Feedback
Hang Wang
Sen Lin
Junshan Zhang
21
19
0
20 Jun 2023
Diverse Projection Ensembles for Distributional Reinforcement Learning
Moritz A. Zanger
Wendelin Bohmer
M. Spaan
25
4
0
12 Jun 2023
Distance Weighted Supervised Learning for Offline Interaction Data
Joey Hejna
Jensen Gao
Dorsa Sadigh
OffRL
36
12
0
26 Apr 2023
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
Ghada Sokar
Rishabh Agarwal
Pablo Samuel Castro
Utku Evci
CLL
51
88
0
24 Feb 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
26
6
0
03 Feb 2023
Distillation Policy Optimization
Jianfei Ma
OffRL
23
1
0
01 Feb 2023
SoK: Adversarial Machine Learning Attacks and Defences in Multi-Agent Reinforcement Learning
Maxwell Standen
Junae Kim
Claudia Szabo
AAML
32
5
0
11 Jan 2023
A Survey on Transformers in Reinforcement Learning
Wenzhe Li
Hao Luo
Zichuan Lin
Chongjie Zhang
Zongqing Lu
Deheng Ye
OffRL
MU
AI4CE
37
55
0
08 Jan 2023
Is Conditional Generative Modeling all you need for Decision-Making?
Anurag Ajay
Yilun Du
Abhi Gupta
J. Tenenbaum
Tommi Jaakkola
Pulkit Agrawal
DiffM
47
360
0
28 Nov 2022
Adversarial Cheap Talk
Chris Xiaoxuan Lu
Timon Willi
Alistair Letcher
Jakob N. Foerster
AAML
24
17
0
20 Nov 2022
Control Transformer: Robot Navigation in Unknown Environments through PRM-Guided Return-Conditioned Sequence Modeling
Daniel Lawson
A. H. Qureshi
24
7
0
11 Nov 2022
Bridging the Gap Between Target Networks and Functional Regularization
Alexandre Piché
Valentin Thomas
Joseph Marino
Rafael Pardiñas
Gian Maria Marconi
C. Pal
Mohammad Emtiyaz Khan
14
1
0
21 Oct 2022
A Policy-Guided Imitation Approach for Offline Reinforcement Learning
Haoran Xu
Li Jiang
Jianxiong Li
Xianyuan Zhan
OffRL
26
61
0
15 Oct 2022
Factors of Influence of the Overestimation Bias of Q-Learning
Julius Wagenbach
M. Sabatelli
15
1
0
11 Oct 2022
Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks
Litian Liang
Yaosheng Xu
Stephen Marcus McAleer
Dailin Hu
Alexander Ihler
Pieter Abbeel
Roy Fox
OOD
19
16
0
16 Sep 2022
Improved Policy Optimization for Online Imitation Learning
J. Lavington
Sharan Vaswani
Mark W. Schmidt
OffRL
18
6
0
29 Jul 2022
Multi-objective Optimization of Notifications Using Offline Reinforcement Learning
Prakruthi Prabhakar
Yiping Yuan
Guangyu Yang
Wensheng Sun
A. Muralidharan
OffRL
28
6
0
07 Jul 2022
Stabilizing Off-Policy Deep Reinforcement Learning from Pixels
Edoardo Cetin
Philip J. Ball
Steve Roberts
Oya Celiktutan
30
36
0
03 Jul 2022
Critic Sequential Monte Carlo
Vasileios Lioutas
J. Lavington
Justice Sefas
Matthew Niedoba
Yunpeng Liu
Berend Zwartsenberg
Setareh Dabiri
Frank D. Wood
Adam Scibior
47
7
0
30 May 2022
Robust Losses for Learning Value Functions
Andrew Patterson
Victor Liao
Martha White
25
12
0
17 May 2022
deep-significance - Easy and Meaningful Statistical Significance Testing in the Age of Neural Networks
Dennis Ulmer
Christian Hardmeier
J. Frellsen
48
42
0
14 Apr 2022
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
48
143
0
28 Feb 2022
Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics
Honghu Xue
Benedikt Hein
M. Bakr
Georg Schildbach
Bengt Abel
Elmar Rueckert
16
15
0
23 Feb 2022
Selective Credit Assignment
Veronica Chelu
Diana Borsa
Doina Precup
Hado van Hasselt
24
2
0
20 Feb 2022
Uncovering Instabilities in Variational-Quantum Deep Q-Networks
Maja Franz
Lucas Wolf
Maniraman Periyasamy
Christian Ufrecht
Daniel D. Scherer
Axel Plinge
Christopher Mutschler
Wolfgang Mauerer
26
29
0
10 Feb 2022
Offline Reinforcement Learning for Mobile Notifications
Yiping Yuan
A. Muralidharan
Preetam Nandy
Miao Cheng
Prakruthi Prabhakar
OffRL
22
9
0
04 Feb 2022
Deep Q-learning: a robust control approach
B. Varga
Balázs Kulcsár
M. Chehreghani
OOD
24
9
0
21 Jan 2022
Chaining Value Functions for Off-Policy Learning
Simon Schmitt
John Shawe-Taylor
Hado van Hasselt
OffRL
23
2
0
17 Jan 2022
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
Aviral Kumar
Rishabh Agarwal
Tengyu Ma
Aaron Courville
George Tucker
Sergey Levine
OffRL
31
65
0
09 Dec 2021
The Impact of Data Distribution on Q-learning with Function Approximation
Pedro P. Santos
Diogo S. Carvalho
A. Sardinha
Francisco S. Melo
OffRL
13
2
0
23 Nov 2021
Hybrid BYOL-ViT: Efficient approach to deal with small datasets
Safwen Naimi
Rien van Leeuwen
W. Souidène
S. B. Saoud
SSL
ViT
25
2
0
08 Nov 2021
Off-Policy Correction for Deep Deterministic Policy Gradient Algorithms via Batch Prioritized Experience Replay
Dogan C. Cicek
Enes Duran
Baturay Saglam
Furkan B. Mutlu
Suleyman Serdar Kozat
OffRL
13
11
0
02 Nov 2021
On the Estimation Bias in Double Q-Learning
Zhizhou Ren
Guangxiang Zhu
Haotian Hu
Beining Han
Jian-Hai Chen
Chongjie Zhang
16
17
0
29 Sep 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
59
0
20 Aug 2021
Convergent and Efficient Deep Q Network Algorithm
Zhikang T. Wang
Masahito Ueda
18
12
0
29 Jun 2021
Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment
Michael Chang
Sid Kaushik
Sergey Levine
Thomas L. Griffiths
31
8
0
28 Jun 2021
Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled Wireless Networks: A Tutorial
Amal Feriani
E. Hossain
35
236
0
06 Nov 2020
GRAC: Self-Guided and Self-Regularized Actor-Critic
Lin Shao
Yifan You
Mengyuan Yan
Qingyun Sun
Jeannette Bohg
16
23
0
18 Sep 2020
A Unifying Framework for Reinforcement Learning and Planning
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
30
9
0
26 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
116
6,655
0
13 Jun 2020
Towards Understanding Cooperative Multi-Agent Q-Learning with Value Factorization
Jianhao Wang
Zhizhou Ren
Beining Han
Jianing Ye
Chongjie Zhang
OffRL
21
32
0
31 May 2020
Better Exploration with Optimistic Actor-Critic
K. Ciosek
Q. Vuong
R. Loftin
Katja Hofmann
13
148
0
28 Oct 2019
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Justin Fu
Aviral Kumar
Matthew Soh
Sergey Levine
OffRL
19
141
0
26 Feb 2019
A Survey and Critique of Multiagent Deep Reinforcement Learning
Pablo Hernandez-Leal
Bilal Kartal
Matthew E. Taylor
OffRL
32
550
0
12 Oct 2018
1
2
Next