ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02690
  4. Cited By
Provably Efficient Maximum Entropy Exploration

Provably Efficient Maximum Entropy Exploration

6 December 2018
Elad Hazan
Sham Kakade
Karan Singh
A. V. Soest
ArXivPDFHTML

Papers citing "Provably Efficient Maximum Entropy Exploration"

50 / 54 papers shown
Title
Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story
Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story
Vincenzo De Paola
Riccardo Zamboni
Mirco Mutti
Marcello Restelli
19
0
0
02 May 2025
Behavioral Entropy-Guided Dataset Generation for Offline Reinforcement Learning
Behavioral Entropy-Guided Dataset Generation for Offline Reinforcement Learning
Wesley A. Suttle
A. Suresh
Carlos Nieto-Granda
OffRL
92
0
0
06 Feb 2025
DIAL: Distribution-Informed Adaptive Learning of Multi-Task Constraints for Safety-Critical Systems
DIAL: Distribution-Informed Adaptive Learning of Multi-Task Constraints for Safety-Critical Systems
Se-Wook Yoo
Seung-Woo Seo
48
0
0
30 Jan 2025
NBDI: A Simple and Efficient Termination Condition for Skill Extraction from Task-Agnostic Demonstrations
NBDI: A Simple and Efficient Termination Condition for Skill Extraction from Task-Agnostic Demonstrations
Myunsoo Kim
Hayeong Lee
Seong-Woong Shim
JunHo Seo
Byung-Jun Lee
LLMAG
37
0
0
22 Jan 2025
Autoregressive Action Sequence Learning for Robotic Manipulation
Autoregressive Action Sequence Learning for Robotic Manipulation
Xinyu Zhang
Yuhan Liu
Haonan Chang
Liam Schramm
Abdeslam Boularias
26
7
0
04 Oct 2024
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Qining Zhang
Lei Ying
OffRL
37
1
0
25 Sep 2024
Random Latent Exploration for Deep Reinforcement Learning
Random Latent Exploration for Deep Reinforcement Learning
Srinath Mahankali
Zhang-Wei Hong
Ayush Sekhari
Alexander Rakhlin
Pulkit Agrawal
33
3
0
18 Jul 2024
Global Reinforcement Learning: Beyond Linear and Convex Rewards via
  Submodular Semi-gradient Methods
Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods
Ric De Santi
Manish Prajapat
Andreas Krause
36
3
0
13 Jul 2024
Provably Efficient Long-Horizon Exploration in Monte Carlo Tree Search
  through State Occupancy Regularization
Provably Efficient Long-Horizon Exploration in Monte Carlo Tree Search through State Occupancy Regularization
Liam Schramm
Abdeslam Boularias
16
1
0
07 Jul 2024
Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis
Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis
Qining Zhang
Honghao Wei
Lei Ying
OffRL
45
1
0
11 Jun 2024
MetaCURL: Non-stationary Concave Utility Reinforcement Learning
MetaCURL: Non-stationary Concave Utility Reinforcement Learning
B. Moreno
Margaux Brégère
Pierre Gaillard
Nadia Oudjane
OffRL
22
0
0
30 May 2024
Koopman-Assisted Reinforcement Learning
Koopman-Assisted Reinforcement Learning
Preston Rozwood
Edward Mehrez
Ludger Paehler
Wen Sun
Steven L. Brunton
32
6
0
04 Mar 2024
Iteratively Learn Diverse Strategies with State Distance Information
Iteratively Learn Diverse Strategies with State Distance Information
Wei Fu
Weihua Du
Jingwei Li
Sunli Chen
Jingzhao Zhang
Yi Wu
38
3
0
23 Oct 2023
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
Seohong Park
Oleh Rybkin
Sergey Levine
OffRL
28
34
0
13 Oct 2023
Subwords as Skills: Tokenization for Sparse-Reward Reinforcement
  Learning
Subwords as Skills: Tokenization for Sparse-Reward Reinforcement Learning
David Yunis
Justin Jung
Falcon Z. Dai
Matthew R. Walter
OffRL
30
0
0
08 Sep 2023
Submodular Reinforcement Learning
Submodular Reinforcement Learning
Manish Prajapat
Mojmír Mutný
M. Zeilinger
Andreas Krause
OffRL
13
12
0
25 Jul 2023
Policy Finetuning in Reinforcement Learning via Design of Experiments
  using Offline Data
Policy Finetuning in Reinforcement Learning via Design of Experiments using Offline Data
Ruiqi Zhang
Andrea Zanette
OffRL
OnRL
30
5
0
10 Jul 2023
Active Sensing with Predictive Coding and Uncertainty Minimization
Active Sensing with Predictive Coding and Uncertainty Minimization
A. Sharafeldin
N. Imam
Hannah Choi
18
2
0
02 Jul 2023
Optimal Exploration for Model-Based RL in Nonlinear Systems
Optimal Exploration for Model-Based RL in Nonlinear Systems
Andrew Wagenmaker
Guanya Shi
Kevin G. Jamieson
31
14
0
15 Jun 2023
A Cover Time Study of a non-Markovian Algorithm
A Cover Time Study of a non-Markovian Algorithm
Guanhua Fang
G. Samorodnitsky
Zhiqiang Xu
13
0
0
08 Jun 2023
Policy Gradient Algorithms Implicitly Optimize by Continuation
Policy Gradient Algorithms Implicitly Optimize by Continuation
Adrien Bolland
Gilles Louppe
D. Ernst
24
3
0
11 May 2023
Improved Sample Complexity for Reward-free Reinforcement Learning under
  Low-rank MDPs
Improved Sample Complexity for Reward-free Reinforcement Learning under Low-rank MDPs
Yuan-Chia Cheng
Ruiquan Huang
J. Yang
Yitao Liang
OffRL
37
8
0
20 Mar 2023
Fast Rates for Maximum Entropy Exploration
Fast Rates for Maximum Entropy Exploration
D. Tiapkin
Denis Belomestny
Daniele Calandriello
Eric Moulines
Rémi Munos
A. Naumov
Pierre Perrault
Yunhao Tang
Michal Valko
Pierre Menard
36
17
0
14 Mar 2023
Scalable Multi-Agent Reinforcement Learning with General Utilities
Scalable Multi-Agent Reinforcement Learning with General Utilities
Donghao Ying
Yuhao Ding
Alec Koppel
Javad Lavaei
26
1
0
15 Feb 2023
Investigating the role of model-based learning in exploration and
  transfer
Investigating the role of model-based learning in exploration and transfer
Jacob Walker
Eszter Vértes
Yazhe Li
Gabriel Dulac-Arnold
Ankesh Anand
T. Weber
Jessica B. Hamrick
OffRL
26
6
0
08 Feb 2023
A general Markov decision process formalism for action-state
  entropy-regularized reward maximization
A general Markov decision process formalism for action-state entropy-regularized reward maximization
D. Grytskyy
Jorge Ramírez-Ruiz
R. Moreno-Bote
22
3
0
02 Feb 2023
The Conditional Cauchy-Schwarz Divergence with Applications to Time-Series Data and Sequential Decision Making
The Conditional Cauchy-Schwarz Divergence with Applications to Time-Series Data and Sequential Decision Making
Shujian Yu
Hongming Li
Sigurd Løkse
Robert Jenssen
José C. Príncipe
BDL
21
6
0
21 Jan 2023
CIM: Constrained Intrinsic Motivation for Sparse-Reward Continuous Control
Xiang Zheng
Xingjun Ma
Cong Wang
21
1
0
28 Nov 2022
Choreographer: Learning and Adapting Skills in Imagination
Choreographer: Learning and Adapting Skills in Imagination
Pietro Mazzaglia
Tim Verbelen
Bart Dhoedt
Alexandre Lacoste
Sai Rajeswar
19
21
0
23 Nov 2022
Learning General World Models in a Handful of Reward-Free Deployments
Learning General World Models in a Handful of Reward-Free Deployments
Yingchen Xu
Jack Parker-Holder
Aldo Pacchiano
Philip J. Ball
Oleh Rybkin
Stephen J. Roberts
Tim Rocktaschel
Edward Grefenstette
OffRL
53
8
0
23 Oct 2022
An information-theoretic perspective on intrinsic motivation in
  reinforcement learning: a survey
An information-theoretic perspective on intrinsic motivation in reinforcement learning: a survey
A. Aubret
L. Matignon
S. Hassas
24
35
0
19 Sep 2022
Active Exploration via Experiment Design in Markov Chains
Active Exploration via Experiment Design in Markov Chains
Mojmír Mutný
Tadeusz Janik
Andreas Krause
23
14
0
29 Jun 2022
BYOL-Explore: Exploration by Bootstrapped Prediction
BYOL-Explore: Exploration by Bootstrapped Prediction
Z. Guo
S. Thakoor
Miruna Pislar
Bernardo Avila-Pires
Florent Altché
...
Yunhao Tang
Michal Valko
Rémi Munos
M. G. Azar
Bilal Piot
22
67
0
16 Jun 2022
On Reinforcement Learning and Distribution Matching for Fine-Tuning
  Language Models with no Catastrophic Forgetting
On Reinforcement Learning and Distribution Matching for Fine-Tuning Language Models with no Catastrophic Forgetting
Tomasz Korbak
Hady ElSahar
Germán Kruszewski
Marc Dymetman
CLL
10
49
0
01 Jun 2022
Reward Uncertainty for Exploration in Preference-based Reinforcement
  Learning
Reward Uncertainty for Exploration in Preference-based Reinforcement Learning
Xinran Liang
Katherine Shu
Kimin Lee
Pieter Abbeel
16
58
0
24 May 2022
Reinforcement Learning with Action-Free Pre-Training from Videos
Reinforcement Learning with Action-Free Pre-Training from Videos
Younggyo Seo
Kimin Lee
Stephen James
Pieter Abbeel
SSL
OnRL
16
115
0
25 Mar 2022
Rényi State Entropy for Exploration Acceleration in Reinforcement
  Learning
Rényi State Entropy for Exploration Acceleration in Reinforcement Learning
Mingqi Yuan
Man-On Pun
Dong Wang
14
23
0
08 Mar 2022
A Differential Entropy Estimator for Training Neural Networks
A Differential Entropy Estimator for Training Neural Networks
Georg Pichler
Pierre Colombo
Malik Boudiaf
Günther Koliander
Pablo Piantanida
15
21
0
14 Feb 2022
Challenging Common Assumptions in Convex Reinforcement Learning
Challenging Common Assumptions in Convex Reinforcement Learning
Mirco Mutti
Ric De Santi
Piersilvio De Bartolomeis
Marcello Restelli
OffRL
9
21
0
03 Feb 2022
B-Pref: Benchmarking Preference-Based Reinforcement Learning
B-Pref: Benchmarking Preference-Based Reinforcement Learning
Kimin Lee
Laura M. Smith
Anca Dragan
Pieter Abbeel
OffRL
22
92
0
04 Nov 2021
Direct then Diffuse: Incremental Unsupervised Skill Discovery for State
  Covering and Goal Reaching
Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching
Pierre-Alexandre Kamienny
Jean Tarbouriech
Sylvain Lamprier
A. Lazaric
Ludovic Denoyer
SSL
23
18
0
27 Oct 2021
Concave Utility Reinforcement Learning with Zero-Constraint Violations
Concave Utility Reinforcement Learning with Zero-Constraint Violations
Mridul Agarwal
Qinbo Bai
Vaneet Aggarwal
8
12
0
12 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
8
80
0
01 Sep 2021
APS: Active Pretraining with Successor Features
APS: Active Pretraining with Successor Features
Hao Liu
Pieter Abbeel
14
118
0
31 Aug 2021
Gap-Dependent Unsupervised Exploration for Reinforcement Learning
Gap-Dependent Unsupervised Exploration for Reinforcement Learning
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
15
12
0
11 Aug 2021
Rapid Exploration for Open-World Navigation with Latent Goal Models
Rapid Exploration for Open-World Navigation with Latent Goal Models
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
6
70
0
12 Apr 2021
Behavior From the Void: Unsupervised Active Pre-Training
Behavior From the Void: Unsupervised Active Pre-Training
Hao Liu
Pieter Abbeel
VLM
SSL
26
193
0
08 Mar 2021
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Victor Campos
Pablo Sprechmann
S. Hansen
André Barreto
Steven Kapturowski
Alex Vitvitskyi
Adria Puigdomenech Badia
Charles Blundell
OffRL
OnRL
20
26
0
24 Feb 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
19
2
0
04 Jan 2021
Randomized Value Functions via Posterior State-Abstraction Sampling
Randomized Value Functions via Posterior State-Abstraction Sampling
Dilip Arumugam
Benjamin Van Roy
OffRL
11
7
0
05 Oct 2020
12
Next