Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.04606
Cited By
Deep Anomaly Detection with Outlier Exposure
11 December 2018
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Anomaly Detection with Outlier Exposure"
50 / 247 papers shown
Title
Discrete neural representations for explainable anomaly detection
Stanislaw Szymanowicz
James Charles
R. Cipolla
AAML
AI4TS
FAtt
19
20
0
10 Dec 2021
PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
Dan Hendrycks
Andy Zou
Mantas Mazeika
Leonard Tang
Bo-wen Li
D. Song
Jacob Steinhardt
UQCV
23
136
0
09 Dec 2021
Provable Guarantees for Understanding Out-of-distribution Detection
Peyman Morteza
Yixuan Li
OODD
30
86
0
01 Dec 2021
FROB: Few-shot ROBust Model for Classification and Out-of-Distribution Detection
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
11
4
0
30 Nov 2021
Bounds all around: training energy-based models with bidirectional bounds
Cong Geng
Jia Wang
Zhiyong Gao
J. Frellsen
Søren Hauberg
24
15
0
01 Nov 2021
Exploring Covariate and Concept Shift for Detection and Calibration of Out-of-Distribution Data
Junjiao Tian
Yen-Change Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
19
6
0
28 Oct 2021
Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination
Jongmin Yu
Hyeontaek Oh
Minkyung Kim
Junsik Kim
22
10
0
28 Oct 2021
Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection
Chunjong Park
Anas Awadalla
Tadayoshi Kohno
Shwetak N. Patel
OOD
25
29
0
26 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
185
875
0
21 Oct 2021
See Yourself in Others: Attending Multiple Tasks for Own Failure Detection
Bo Sun
Jiaxu Xing
Hermann Blum
Roland Siegwart
César Cadena
36
12
0
06 Oct 2021
f
f
f
-Cal: Calibrated aleatoric uncertainty estimation from neural networks for robot perception
Dhaivat Bhatt
Kaustubh Mani
Dishank Bansal
Krishna Murthy Jatavallabhula
Hanju Lee
Liam Paull
UQCV
23
5
0
28 Sep 2021
A novel network training approach for open set image recognition
Md Tahmid Hossaina
S. Teng
Guojun Lu
Ferdous Sohel
14
0
0
27 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
30
16
0
20 Sep 2021
Towards Zero and Few-shot Knowledge-seeking Turn Detection in Task-orientated Dialogue Systems
Di Jin
Shuyang Gao
Seokhwan Kim
Yang Liu
Dilek Z. Hakkani-Tür
16
7
0
18 Sep 2021
No True State-of-the-Art? OOD Detection Methods are Inconsistent across Datasets
Fahim Tajwar
Ananya Kumar
Sang Michael Xie
Percy Liang
OODD
22
21
0
12 Sep 2021
Generatively Augmented Neural Network Watchdog for Image Classification Networks
Justin Bui
Glauco A. Amigo
R. Marks
26
0
0
07 Sep 2021
GOLD: Improving Out-of-Scope Detection in Dialogues using Data Augmentation
Derek Chen
Zhou Yu
19
31
0
07 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
49
515
0
31 Aug 2021
NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task Models
Myeongjun Jang
Thomas Lukasiewicz
22
4
0
29 Aug 2021
Semantically Coherent Out-of-Distribution Detection
Jingkang Yang
Haoqi Wang
Litong Feng
Xiaopeng Yan
Huabin Zheng
Wayne Zhang
Ziwei Liu
OODD
19
125
0
26 Aug 2021
Revealing the Distributional Vulnerability of Discriminators by Implicit Generators
Zhilin Zhao
LongBing Cao
Kun-Yu Lin
23
11
0
23 Aug 2021
A Survey on Open Set Recognition
Atefeh Mahdavi
Marco M. Carvalho
BDL
16
34
0
18 Aug 2021
Out-of-Distribution Detection Using Outlier Detection Methods
Jan Diers
Christian Pigorsch
OODD
16
3
0
18 Aug 2021
CODEs: Chamfer Out-of-Distribution Examples against Overconfidence Issue
Keke Tang
Dingruibo Miao
Weilong Peng
Jianpeng Wu
Yawen Shi
Zhaoquan Gu
Zhihong Tian
Wenping Wang
OODD
137
30
0
13 Aug 2021
Unconditional Scene Graph Generation
Sarthak Garg
Helisa Dhamo
Azade Farshad
Sabrina Musatian
Nassir Navab
F. Tombari
10
23
0
12 Aug 2021
Transfer Learning Gaussian Anomaly Detection by Fine-tuning Representations
Oliver Rippel
Arnav Chavan
Chucai Lei
Dorit Merhof
38
18
0
09 Aug 2021
Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
UQCV
19
48
0
03 Aug 2021
Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
18
12
0
21 Jul 2021
Neural Contextual Anomaly Detection for Time Series
Chris U. Carmona
Franccois-Xavier Aubet
Valentin Flunkert
Jan Gasthaus
BDL
AI4TS
57
62
0
16 Jul 2021
On the Importance of Regularisation & Auxiliary Information in OOD Detection
John Mitros
Brian Mac Namee
21
2
0
15 Jul 2021
Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation
Camila González
Karol Gotkowski
A. Bucher
Ricarda Fischbach
Isabel Kaltenborn
Anirban Mukhopadhyay
18
31
0
13 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Towards Consistent Predictive Confidence through Fitted Ensembles
Navid Kardan
Ankit Sharma
Kenneth O. Stanley
FedML
OODD
16
8
0
22 Jun 2021
Test Distribution-Aware Active Learning: A Principled Approach Against Distribution Shift and Outliers
Andreas Kirsch
Tom Rainforth
Y. Gal
OOD
TTA
24
22
0
22 Jun 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
20
15
0
18 Jun 2021
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
33
216
0
16 Jun 2021
Robust Out-of-Distribution Detection on Deep Probabilistic Generative Models
Jaemoo Choi
Changyeon Yoon
Jeongwoo Bae
Myung-joo Kang
OODD
20
4
0
15 Jun 2021
InFlow: Robust outlier detection utilizing Normalizing Flows
Nishant Kumar
Pia Hanfeld
Michael Hecht
Michael Bussmann
Stefan Gumhold
Nico Hoffmann
OODD
OOD
TPM
21
4
0
10 Jun 2021
Description and Discussion on DCASE 2021 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions
Y. Kawaguchi
Keisuke Imoto
Yuma Koizumi
N. Harada
Daisuke Niizumi
Kota Dohi
Ryo Tanabe
Harsh Purohit
Takashi Endo
21
91
0
08 Jun 2021
Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
15
4
0
02 Jun 2021
Autoencoding Under Normalization Constraints
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
OODD
UQCV
27
38
0
12 May 2021
Distribution Awareness for AI System Testing
David Berend
11
8
0
06 May 2021
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
Rui Huang
Yixuan Li
OODD
31
235
0
05 May 2021
MOOD: Multi-level Out-of-distribution Detection
Ziqian Lin
Sreya . Dutta Roy
Yixuan Li
OODD
26
114
0
30 Apr 2021
Unsupervised Class-Incremental Learning Through Confusion
Shivam Khare
Kun Cao
James M. Rehg
SSL
CLL
16
6
0
09 Apr 2021
OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
Petro Marek
V. Naik
Vincent Auvray
Anuj Kumar Goyal
25
32
0
06 Apr 2021
Performance Analysis of Out-of-Distribution Detection on Various Trained Neural Networks
Jens Henriksson
C. Berger
Markus Borg
Lars Tornberg
S. Sathyamoorthy
Cristofer Englund
OODD
12
17
0
29 Mar 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag
M. Chiang
Prateek Mittal
OODD
28
330
0
22 Mar 2021
Flow-based Self-supervised Density Estimation for Anomalous Sound Detection
Kota Dohi
Takashi Endo
Harsh Purohit
Ryo Tanabe
Y. Kawaguchi
22
58
0
16 Mar 2021
A Review and Refinement of Surprise Adequacy
Michael Weiss
Rwiddhi Chakraborty
Paolo Tonella
AAML
AI4TS
11
16
0
10 Mar 2021
Previous
1
2
3
4
5
Next