ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.05720
  4. Cited By
Why ReLU networks yield high-confidence predictions far away from the
  training data and how to mitigate the problem
v1v2 (latest)

Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem

13 December 2018
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
    OODD
ArXiv (abs)PDFHTML

Papers citing "Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem"

50 / 366 papers shown
Combine and Conquer: A Meta-Analysis on Data Shift and
  Out-of-Distribution Detection
Combine and Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection
Eduardo Dadalto
F. Alberge
Pierre Duhamel
Pablo Piantanida
OODD
261
0
0
23 Jun 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across
  Diverse Test Conditions?
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
301
4
0
14 Jun 2024
Batch-in-Batch: a new adversarial training framework for initial
  perturbation and sample selection
Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
Yinting Wu
Pai Peng
Bo Cai
Le Li
.
AAML
237
0
0
06 Jun 2024
Evidentially Calibrated Source-Free Time-Series Domain Adaptation with
  Temporal Imputation
Evidentially Calibrated Source-Free Time-Series Domain Adaptation with Temporal Imputation
Mohamed Ragab
Peiliang Gong
Emadeldeen Eldele
Wenyu Zhang
Ruibing Jin
Chuan-Sheng Foo
Daoqiang Zhang
Xiaoli Li
Zhenghua Chen
TTAAI4TS
389
3
0
04 Jun 2024
Zero-Shot Out-of-Distribution Detection with Outlier Label Exposure
Zero-Shot Out-of-Distribution Detection with Outlier Label Exposure
Choubo Ding
Guansong Pang
OODDVLM
241
6
0
03 Jun 2024
When and How Does In-Distribution Label Help Out-of-Distribution
  Detection?
When and How Does In-Distribution Label Help Out-of-Distribution Detection?
Xuefeng Du
Yiyou Sun
Shouqing Yang
300
10
0
28 May 2024
Transitional Uncertainty with Layered Intermediate Predictions
Transitional Uncertainty with Layered Intermediate Predictions
Ryan Benkert
Mohit Prabhushankar
Ghassan AlRegib
287
3
0
25 May 2024
Mitigating Overconfidence in Out-of-Distribution Detection by Capturing
  Extreme Activations
Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations
Mohammad Azizmalayeri
Ameen Abu-Hanna
Giovanni Cina
OODD
231
4
0
21 May 2024
How to train your ViT for OOD Detection
How to train your ViT for OOD Detection
Maximilian Mueller
Matthias Hein
302
2
0
21 May 2024
Out-of-distribution detection based on subspace projection of
  high-dimensional features output by the last convolutional layer
Out-of-distribution detection based on subspace projection of high-dimensional features output by the last convolutional layer
Qiuyu Zhu
Yiwei He
OODD
207
2
0
02 May 2024
Out-of-distribution Detection in Medical Image Analysis: A survey
Out-of-distribution Detection in Medical Image Analysis: A survey
Zesheng Hong
Yubiao Yue
Yubin Chen
Lele Cong
Huanjie Lin
...
Jialong Xu
Xiaoqi Yang
Hechang Chen
Zhenzhang Li
Sihong Xie
OOD
206
15
0
28 Apr 2024
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling
Harit Vishwakarma
Reid Chen
Chen
Sui Jiet Tay
Satya Sai Srinath Namburi
Frederic Sala
Ramya Korlakai Vinayak
299
5
0
24 Apr 2024
Gradient-Regularized Out-of-Distribution Detection
Gradient-Regularized Out-of-Distribution Detection
Sina Sharifi
Taha Entesari
Bardia Safaei
Vishal M. Patel
Mahyar Fazlyab
OODD
319
11
0
18 Apr 2024
Toward a Realistic Benchmark for Out-of-Distribution Detection
Toward a Realistic Benchmark for Out-of-Distribution Detection
Pietro Recalcati
Fabio Garcea
Luca Piano
Fabrizio Lamberti
Lia Morra
OODD
282
1
0
16 Apr 2024
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A
  Survey
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey
Naveen Karunanayake
Ravin Gunawardena
Suranga Seneviratne
Sanjay Chawla
OOD
301
14
0
08 Apr 2024
Hyperbolic Metric Learning for Visual Outlier Detection
Hyperbolic Metric Learning for Visual Outlier Detection
Alvaro Gonzalez-Jimenez
Simone Lionetti
Dena Bazazian
Philippe Gottfrois
Fabian Gröger
Marc Pouly
Alexander A. Navarini
212
3
0
22 Mar 2024
LoMOE: Localized Multi-Object Editing via Multi-Diffusion
LoMOE: Localized Multi-Object Editing via Multi-Diffusion
Goirik Chakrabarty
Aditya Chandrasekar
Ramya Hebbalaguppe
AP Prathosh
DiffM
150
8
0
01 Mar 2024
Trustworthy Personalized Bayesian Federated Learning via Posterior
  Fine-Tune
Trustworthy Personalized Bayesian Federated Learning via Posterior Fine-Tune
Mengen Luo
Chi Xu
E. Kuruoglu
FedML
316
1
0
25 Feb 2024
Towards Trustworthy Reranking: A Simple yet Effective Abstention
  Mechanism
Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism
Hippolyte Gisserot-Boukhlef
Manuel Faysse
Emmanuel Malherbe
C´eline Hudelot
Pierre Colombo
423
5
0
20 Feb 2024
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?International Conference on Learning Representations (ICLR), 2024
Xuefeng Du
Zhen Fang
Ilias Diakonikolas
Shouqing Yang
OODD
248
34
0
05 Feb 2024
Optimal Parameter and Neuron Pruning for Out-of-Distribution Detection
Optimal Parameter and Neuron Pruning for Out-of-Distribution Detection
Chao Chen
Zhihang Fu
Kai-Chun Liu
Ze Chen
Mingyuan Tao
Jieping Ye
OODD
229
6
0
04 Feb 2024
Uncertainty estimates for semantic segmentation: providing enhanced
  reliability for automated motor claims handling
Uncertainty estimates for semantic segmentation: providing enhanced reliability for automated motor claims handlingMachine Vision and Applications (MVA), 2024
Jan Küchler
Daniel Kröll
S. Schoenen
Andreas Witte
UQCV
167
2
0
17 Jan 2024
Reliability and Interpretability in Science and Deep Learning
Reliability and Interpretability in Science and Deep Learning
Luigi Scorzato
246
16
0
14 Jan 2024
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
  from Pre-trained Models
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models
Gianni Franchi
Olivier Laurent
Maxence Leguéry
Andrei Bursuc
Andrea Pilzer
Angela Yao
UQCVBDL
197
15
0
23 Dec 2023
HyperMix: Out-of-Distribution Detection and Classification in Few-Shot
  Settings
HyperMix: Out-of-Distribution Detection and Classification in Few-Shot Settings
Nikhil Mehta
Kevin J. Liang
Jing Huang
Fu-Jen Chu
Li Yin
Tal Hassner
OODD
206
3
0
22 Dec 2023
How to Overcome Curse-of-Dimensionality for Out-of-Distribution
  Detection?
How to Overcome Curse-of-Dimensionality for Out-of-Distribution Detection?
Soumya Suvra Ghosal
Yiyou Sun
Shouqing Yang
OODD
225
19
0
22 Dec 2023
EAT: Towards Long-Tailed Out-of-Distribution Detection
EAT: Towards Long-Tailed Out-of-Distribution DetectionAAAI Conference on Artificial Intelligence (AAAI), 2023
Tong Wei
Bo-Lin Wang
Min-Ling Zhang
OODD
251
18
0
14 Dec 2023
Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework
  for Enhancing Model Performance and Efficiency
Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework for Enhancing Model Performance and Efficiency
Suorong Yang
Hongchao Yang
Suhan Guo
Shen Furao
Jian Zhao
194
5
0
09 Dec 2023
DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering
  Classifier Differences Neuron Visualisations and Visual Counterfactual
  Explanations
DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual ExplanationsComputer Vision and Pattern Recognition (CVPR), 2023
Maximilian Augustin
Yannic Neuhaus
Matthias Hein
DiffM
380
9
0
29 Nov 2023
ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
ID-like Prompt Learning for Few-Shot Out-of-Distribution DetectionComputer Vision and Pattern Recognition (CVPR), 2023
Yichen Bai
Zongbo Han
Changqing Zhang
Bing Cao
Xiaoheng Jiang
Qinghua Hu
OODD
404
37
0
26 Nov 2023
RankFeat&RankWeight: Rank-1 Feature/Weight Removal for
  Out-of-distribution Detection
RankFeat&RankWeight: Rank-1 Feature/Weight Removal for Out-of-distribution DetectionIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Yue Song
Andrii Zadaianchuk
Wei Wang
OODD
310
3
0
23 Nov 2023
GAIA: Delving into Gradient-based Attribution Abnormality for
  Out-of-distribution Detection
GAIA: Delving into Gradient-based Attribution Abnormality for Out-of-distribution Detection
Jinggang Chen
Junjie Li
Xiaoyang Qu
Jianzong Wang
Jiguang Wan
Jing Xiao
OODD
241
11
0
16 Nov 2023
Distilling the Unknown to Unveil Certainty
Distilling the Unknown to Unveil CertaintyIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Zhilin Zhao
Longbing Cao
Yixuan Zhang
Kun-Li Channing Lin
Wei-Shi Zheng
213
0
0
14 Nov 2023
Improvements on Uncertainty Quantification for Node Classification via
  Distance-Based Regularization
Improvements on Uncertainty Quantification for Node Classification via Distance-Based RegularizationNeural Information Processing Systems (NeurIPS), 2023
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
239
6
0
10 Nov 2023
Preventing Arbitrarily High Confidence on Far-Away Data in
  Point-Estimated Discriminative Neural Networks
Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural NetworksInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Ahmad Rashid
Serena Hacker
Guojun Zhang
Agustinus Kristiadi
Pascal Poupart
OODD
220
0
0
07 Nov 2023
Out-of-distribution Detection Learning with Unreliable
  Out-of-distribution Sources
Out-of-distribution Detection Learning with Unreliable Out-of-distribution SourcesNeural Information Processing Systems (NeurIPS), 2023
Haotian Zheng
Qizhou Wang
Zhen Fang
Xiaobo Xia
Yifan Zhang
Tongliang Liu
Bo Han
442
39
0
06 Nov 2023
Learning to Augment Distributions for Out-of-Distribution Detection
Learning to Augment Distributions for Out-of-Distribution DetectionNeural Information Processing Systems (NeurIPS), 2023
Qizhou Wang
Zhen Fang
Yonggang Zhang
Yifan Zhang
Shouqing Yang
Bo Han
OODD
405
50
0
03 Nov 2023
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
SmoothHess: ReLU Network Feature Interactions via Stein's LemmaNeural Information Processing Systems (NeurIPS), 2023
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
336
7
0
01 Nov 2023
Classifier-head Informed Feature Masking and Prototype-based Logit
  Smoothing for Out-of-Distribution Detection
Classifier-head Informed Feature Masking and Prototype-based Logit Smoothing for Out-of-Distribution Detection
Zhuohao Sun
Yiqiao Qiu
Zhijun Tan
Weishi Zheng
Ruixuan Wang
OODD
234
8
0
27 Oct 2023
Bayesian Domain Invariant Learning via Posterior Generalization of
  Parameter Distributions
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDLOOD
304
1
0
25 Oct 2023
Contextualised Out-of-Distribution Detection using Pattern Identication
Contextualised Out-of-Distribution Detection using Pattern Identication
Romain Xu-Darme
Julien Girard-Satabin
Darryl Hond
Gabriele Incorvaia
Zakaria Chihani
OODD
206
0
0
24 Oct 2023
Open-World Lifelong Graph Learning
Open-World Lifelong Graph LearningIEEE International Joint Conference on Neural Network (IJCNN), 2023
Marcel Hoffmann
Lukas Galke
A. Scherp
216
8
0
19 Oct 2023
Be Bayesian by Attachments to Catch More Uncertainty
Be Bayesian by Attachments to Catch More Uncertainty
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
UQCV
318
0
0
19 Oct 2023
Unified Uncertainty Calibration
Unified Uncertainty Calibration
Kamalika Chaudhuri
David Lopez-Paz
294
0
0
02 Oct 2023
Deep Neural Networks Tend To Extrapolate Predictably
Deep Neural Networks Tend To Extrapolate PredictablyInternational Conference on Learning Representations (ICLR), 2023
Katie Kang
Amrith Rajagopal Setlur
Claire Tomlin
Sergey Levine
209
0
0
02 Oct 2023
On the Disconnect Between Theory and Practice of Neural Networks: Limits
  of the NTK Perspective
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
Jonathan Wenger
Felix Dangel
Agustinus Kristiadi
428
5
0
29 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDLAAML
275
35
0
28 Sep 2023
Unmasking the Chameleons: A Benchmark for Out-of-Distribution Detection
  in Medical Tabular Data
Unmasking the Chameleons: A Benchmark for Out-of-Distribution Detection in Medical Tabular Data
Mohammad Azizmalayeri
Ameen Abu-Hanna
Dirk Kraft
OOD
290
8
0
28 Sep 2023
Nearest Neighbor Guidance for Out-of-Distribution Detection
Nearest Neighbor Guidance for Out-of-Distribution DetectionIEEE International Conference on Computer Vision (ICCV), 2023
Jaewoo Park
Yoon Gyo Jung
Andrew Beng Jin Teoh
OODD
265
58
0
26 Sep 2023
Dream the Impossible: Outlier Imagination with Diffusion Models
Dream the Impossible: Outlier Imagination with Diffusion ModelsNeural Information Processing Systems (NeurIPS), 2023
Xuefeng Du
Yiyou Sun
Xiaojin Zhu
Shouqing Yang
313
86
0
23 Sep 2023
Previous
12345678
Next