ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06467
  4. Cited By
Linking Gaussian Process regression with data-driven manifold embeddings
  for nonlinear data fusion

Linking Gaussian Process regression with data-driven manifold embeddings for nonlinear data fusion

16 December 2018
Seungjoon Lee
Felix Dietrich
George Karniadakis
Ioannis G. Kevrekidis
ArXiv (abs)PDFHTML

Papers citing "Linking Gaussian Process regression with data-driven manifold embeddings for nonlinear data fusion"

4 / 4 papers shown
Title
Non-Myopic Multifidelity Bayesian Optimization
Non-Myopic Multifidelity Bayesian Optimization
Francesco Di Fiore
L. Mainini
94
3
0
13 Jul 2022
Discovering Governing Equations from Partial Measurements with Deep
  Delay Autoencoders
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
109
86
0
13 Jan 2022
Coarse-scale PDEs from fine-scale observations via machine learning
Coarse-scale PDEs from fine-scale observations via machine learning
Seungjoon Lee
M. Kooshkbaghi
K. Spiliotis
Constantinos Siettos
Ioannis G. Kevrekidis
DiffMAI4CE
59
83
0
12 Sep 2019
A physics-aware, probabilistic machine learning framework for
  coarse-graining high-dimensional systems in the Small Data regime
A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime
Constantin Grigo
P. Koutsourelakis
AI4CE
129
26
0
11 Feb 2019
1