Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.02717
Cited By
v1
v2 (latest)
Reliable and Explainable Machine Learning Methods for Accelerated Material Discovery
5 January 2019
B. Kailkhura
Brian Gallagher
Sookyung Kim
A. Hiszpanski
T. Y. Han
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reliable and Explainable Machine Learning Methods for Accelerated Material Discovery"
12 / 12 papers shown
Title
Estimate Deformation Capacity of Non-Ductile RC Shear Walls using Explainable Boosting Machine
Z. Deger
Gülsen Taskin Kaya
J. Wallace
39
3
0
11 Jan 2023
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
74
8
0
23 Nov 2022
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
111
24
0
15 Nov 2022
On Explainability in AI-Solutions: A Cross-Domain Survey
S. D. Antón
Daniel Schneider
Hans D. Schotten
65
2
0
11 Oct 2022
MetaNOR: A Meta-Learnt Nonlocal Operator Regression Approach for Metamaterial Modeling
Lu Zhang
Huaiqian You
Yue Yu
OffRL
80
7
0
04 Jun 2022
A New Approach for Interpretability and Reliability in Clinical Risk Prediction: Acute Coronary Syndrome Scenario
Francisco Valente
J. Henriques
Simão Paredes
Teresa Rocha
Paulo de Carvalho
João Morais
OOD
52
23
0
15 Oct 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
82
26
0
26 Jun 2021
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Thomas Rojat
Raphael Puget
David Filliat
Javier Del Ser
R. Gelin
Natalia Díaz Rodríguez
XAI
AI4TS
99
135
0
02 Apr 2021
Confidence Calibration for Domain Generalization under Covariate Shift
Yunye Gong
Xiaoyu Lin
Yi Yao
Thomas G. Dietterich
Ajay Divakaran
Melinda Gervasio
65
27
0
01 Apr 2021
Leveraging Uncertainty from Deep Learning for Trustworthy Materials Discovery Workflows
Jize Zhang
B. Kailkhura
T. Y. Han
OOD
50
14
0
02 Dec 2020
Probing Model Signal-Awareness via Prediction-Preserving Input Minimization
Sahil Suneja
Yunhui Zheng
Yufan Zhuang
Jim Laredo
Alessandro Morari
AAML
71
34
0
25 Nov 2020
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
120
677
0
21 May 2019
1