ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.02717
  4. Cited By
Reliable and Explainable Machine Learning Methods for Accelerated
  Material Discovery
v1v2 (latest)

Reliable and Explainable Machine Learning Methods for Accelerated Material Discovery

5 January 2019
B. Kailkhura
Brian Gallagher
Sookyung Kim
A. Hiszpanski
T. Y. Han
ArXiv (abs)PDFHTML

Papers citing "Reliable and Explainable Machine Learning Methods for Accelerated Material Discovery"

12 / 12 papers shown
Title
Estimate Deformation Capacity of Non-Ductile RC Shear Walls using
  Explainable Boosting Machine
Estimate Deformation Capacity of Non-Ductile RC Shear Walls using Explainable Boosting Machine
Z. Deger
Gülsen Taskin Kaya
J. Wallace
39
3
0
11 Jan 2023
MEGAN: Multi-Explanation Graph Attention Network
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
74
8
0
23 Nov 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
111
24
0
15 Nov 2022
On Explainability in AI-Solutions: A Cross-Domain Survey
On Explainability in AI-Solutions: A Cross-Domain Survey
S. D. Antón
Daniel Schneider
Hans D. Schotten
65
2
0
11 Oct 2022
MetaNOR: A Meta-Learnt Nonlocal Operator Regression Approach for
  Metamaterial Modeling
MetaNOR: A Meta-Learnt Nonlocal Operator Regression Approach for Metamaterial Modeling
Lu Zhang
Huaiqian You
Yue Yu
OffRL
80
7
0
04 Jun 2022
A New Approach for Interpretability and Reliability in Clinical Risk
  Prediction: Acute Coronary Syndrome Scenario
A New Approach for Interpretability and Reliability in Clinical Risk Prediction: Acute Coronary Syndrome Scenario
Francisco Valente
J. Henriques
Simão Paredes
Teresa Rocha
Paulo de Carvalho
João Morais
OOD
52
23
0
15 Oct 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
82
26
0
26 Jun 2021
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Thomas Rojat
Raphael Puget
David Filliat
Javier Del Ser
R. Gelin
Natalia Díaz Rodríguez
XAIAI4TS
99
135
0
02 Apr 2021
Confidence Calibration for Domain Generalization under Covariate Shift
Confidence Calibration for Domain Generalization under Covariate Shift
Yunye Gong
Xiaoyu Lin
Yi Yao
Thomas G. Dietterich
Ajay Divakaran
Melinda Gervasio
65
27
0
01 Apr 2021
Leveraging Uncertainty from Deep Learning for Trustworthy Materials
  Discovery Workflows
Leveraging Uncertainty from Deep Learning for Trustworthy Materials Discovery Workflows
Jize Zhang
B. Kailkhura
T. Y. Han
OOD
50
14
0
02 Dec 2020
Probing Model Signal-Awareness via Prediction-Preserving Input
  Minimization
Probing Model Signal-Awareness via Prediction-Preserving Input Minimization
Sahil Suneja
Yunhui Zheng
Yufan Zhuang
Jim Laredo
Alessandro Morari
AAML
71
34
0
25 Nov 2020
Explainable Machine Learning for Scientific Insights and Discoveries
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
120
677
0
21 May 2019
1