Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.06314
Cited By
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
18 January 2019
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data"
50 / 297 papers shown
Title
Integration of knowledge and data in machine learning
Yuntian Chen
Dongxiao Zhang
PINN
18
31
0
15 Feb 2022
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
12
39
0
09 Feb 2022
Physics-informed neural networks for solving parametric magnetostatic problems
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
11
33
0
08 Feb 2022
Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: an application to rubber calendering process
Thi Nguyen Khoa Nguyen
T. Dairay
Raphael Meunier
Mathilde Mougeot
PINN
AI4CE
59
29
0
31 Jan 2022
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning
Chengping Rao
Pu Ren
Yang Liu
Hao-Lun Sun
AI4CE
28
26
0
28 Jan 2022
Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator for Learning Solution Operators of Partial Differential Equations
J. Shin
Jae Yong Lee
H. Hwang
11
2
0
28 Jan 2022
Physics-informed ConvNet: Learning Physical Field from a Shallow Neural Network
Peng Shi
Zhi Zeng
Tianshou Liang
AI4CE
18
20
0
26 Jan 2022
Heat Conduction Plate Layout Optimization using Physics-driven Convolutional Neural Networks
Hao Ma
Yang-Tian Sun
M. Chiarelli
18
2
0
21 Jan 2022
Deep Capsule Encoder-Decoder Network for Surrogate Modeling and Uncertainty Quantification
A. Thakur
S. Chakraborty
MedIm
20
4
0
19 Jan 2022
Temperature Field Inversion of Heat-Source Systems via Physics-Informed Neural Networks
Xu Liu
Wei Peng
Zhiqiang Gong
Weien Zhou
W. Yao
8
52
0
18 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
13
1,162
0
14 Jan 2022
DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations
Keju Tang
Xiaoliang Wan
Chao Yang
11
108
0
28 Dec 2021
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
20
25
0
28 Dec 2021
Curriculum learning for data-driven modeling of dynamical systems
Alessandro Bucci
Onofrio Semeraro
A. Allauzen
S. Chibbaro
L. Mathelin
PINN
AI4CE
6
7
0
15 Dec 2021
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
6
5
0
19 Nov 2021
Using Computational Intelligence for solving the Ornstein-Zernike equation
Edwin Bedolla
11
0
0
17 Nov 2021
Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network
Rui Xu
Dongxiao Zhang
Nanzhe Wang
AI4CE
23
17
0
14 Nov 2021
Solving PDE-constrained Control Problems Using Operator Learning
Rakhoon Hwang
Jae Yong Lee
J. Shin
H. Hwang
AI4CE
109
43
0
09 Nov 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
25
377
0
06 Nov 2021
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
28
15
0
02 Nov 2021
Uncertainty quantification for ptychography using normalizing flows
Agnimitra Dasgupta
Z. Di
AI4CE
20
5
0
01 Nov 2021
A Metalearning Approach for Physics-Informed Neural Networks (PINNs): Application to Parameterized PDEs
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
PINN
AI4CE
17
38
0
26 Oct 2021
Interpretable AI forecasting for numerical relativity waveforms of quasi-circular, spinning, non-precessing binary black hole mergers
Asad Khan
Eliu A. Huerta
Huihuo Zheng
16
11
0
13 Oct 2021
Surrogate and inverse modeling for two-phase flow in porous media via theory-guided convolutional neural network
Nanzhe Wang
Haibin Chang
Dongxiao Zhang
14
34
0
12 Oct 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
22
19
0
04 Oct 2021
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
32
68
0
30 Sep 2021
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
24
6
0
28 Sep 2021
Physics-informed Convolutional Neural Networks for Temperature Field Prediction of Heat Source Layout without Labeled Data
Xiaoyu Zhao
Zhiqiang Gong
Yunyang Zhang
Wen Yao
Xiaoqian Chen
OOD
AI4CE
69
89
0
26 Sep 2021
PCNN: A physics-constrained neural network for multiphase flows
Haoyang Zheng
Ziyang Huang
Guang Lin
PINN
8
8
0
18 Sep 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
50
58
0
15 Sep 2021
Reconstructing High-resolution Turbulent Flows Using Physics-Guided Neural Networks
Shengyu Chen
S. Sammak
P. Givi
J. Yurko
Xiaowei Jia
AI4CE
14
9
0
06 Sep 2021
U-FNO -- An enhanced Fourier neural operator-based deep-learning model for multiphase flow
Gege Wen
Zong-Yi Li
Kamyar Azizzadenesheli
Anima Anandkumar
S. Benson
AI4CE
26
359
0
03 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
6
603
0
02 Sep 2021
Physics-integrated hybrid framework for model form error identification in nonlinear dynamical systems
Shailesh Garg
S. Chakraborty
B. Hazra
33
20
0
01 Sep 2021
GrADE: A graph based data-driven solver for time-dependent nonlinear partial differential equations
Y. Kumar
S. Chakraborty
11
8
0
24 Aug 2021
Inverse Aerodynamic Design of Gas Turbine Blades using Probabilistic Machine Learning
Sayan Ghosh
G. A. Padmanabha
Cheng Peng
Steven Atkinson
Valeria Andreoli
Piyush Pandita
T. Vandeputte
N. Zabaras
Liping Wang
AI4CE
22
13
0
17 Aug 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
8
21
0
26 Jul 2021
Training multi-objective/multi-task collocation physics-informed neural network with student/teachers transfer learnings
B. Bahmani
WaiChing Sun
PINN
AI4CE
18
16
0
24 Jul 2021
A novel meta-learning initialization method for physics-informed neural networks
Xu Liu
Xiaoya Zhang
Wei Peng
Weien Zhou
W. Yao
AI4CE
11
72
0
23 Jul 2021
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
37
206
0
16 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
18
62
0
02 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao-Lun Sun
DiffM
AI4CE
29
191
0
26 Jun 2021
Joint Deep Reversible Regression Model and Physics-Informed Unsupervised Learning for Temperature Field Reconstruction
Zhiqiang Gong
Weien Zhou
Jun Zhang
Wei Peng
W. Yao
AI4CE
27
11
0
22 Jun 2021
Making Invisible Visible: Data-Driven Seismic Inversion with Spatio-temporally Constrained Data Augmentation
Yuxin Yang
Xitong Zhang
Qiang Guan
Youzuo Lin
22
15
0
22 Jun 2021
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang
P. Perdikaris
AI4CE
17
116
0
09 Jun 2021
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINN
AI4CE
DiffM
12
72
0
09 Jun 2021
Scalable conditional deep inverse Rosenblatt transports using tensor-trains and gradient-based dimension reduction
Tiangang Cui
S. Dolgov
O. Zahm
11
15
0
08 Jun 2021
Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations
Yingtao Luo
Qiang Liu
Yuntian Chen
Wenbo Hu
Tian Tian
Jun Zhu
DiffM
29
4
0
02 Jun 2021
Learning Green's Functions of Linear Reaction-Diffusion Equations with Application to Fast Numerical Solver
Yuankai Teng
Xiaoping Zhang
Zhu Wang
L. Ju
8
14
0
23 May 2021
Previous
1
2
3
4
5
6
Next