ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07929
  4. Cited By
U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for
  photoreceptor layer segmentation in pathological OCT scans
v1v2 (latest)

U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans

23 January 2019
J. Orlando
Philipp Seeböck
Hrvoje Bogunović
S. Klimscha
C. Grechenig
S. Waldstein
Bianca S. Gerendas
U. Schmidt-Erfurth
    UQCV
ArXiv (abs)PDFHTML

Papers citing "U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans"

13 / 13 papers shown
Title
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Samuel T. M. Ball
UQCVBDL
271
0
0
17 May 2025
Inter-Rater Uncertainty Quantification in Medical Image Segmentation via
  Rater-Specific Bayesian Neural Networks
Inter-Rater Uncertainty Quantification in Medical Image Segmentation via Rater-Specific Bayesian Neural Networks
Qingqiao Hu
Hao Wang
Jing Luo
Yuan Luo
Z. Zhangg
Jan S. Kirschke
Benedikt Wiestler
Bjoern Menze
Jianguo Zhang
Hongwei Bran Li
UQCV
136
2
0
28 Jun 2023
Medical Image Segmentation Review: The success of U-Net
Medical Image Segmentation Review: The success of U-NetIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Reza Azad
Ehsan Khodapanah Aghdam
Amelie Rauland
Yiwei Jia
Atlas Haddadi Avval
Afshin Bozorgpour
Sanaz Karimijafarbigloo
Joseph Paul Cohen
Ehsan Adeli
Dorit Merhof
SSeg
196
539
0
27 Nov 2022
Segmentation of Bruch's Membrane in retinal OCT with AMD using
  anatomical priors and uncertainty quantification
Segmentation of Bruch's Membrane in retinal OCT with AMD using anatomical priors and uncertainty quantificationIEEE journal of biomedical and health informatics (IEEE JBHI), 2022
Botond Fazekas
Dmitrii Lachinov
Guilherme Aresta
Julia Mai
U. Schmidt-Erfurth
Hrvoje Bogunović
94
20
0
26 Oct 2022
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
194
123
0
05 Oct 2022
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can
  trust
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust
Benjamin Lambert
Florence Forbes
Senan Doyle
A. Tucholka
M. Dojat
UQCVMedIm
123
7
0
22 Sep 2022
Y-Net: A Spatiospectral Dual-Encoder Networkfor Medical Image
  Segmentation
Y-Net: A Spatiospectral Dual-Encoder Networkfor Medical Image SegmentationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Azade Farshad
Yousef Yeganeh
Peter L. Gehlbach
Nassir Navab
122
42
0
15 Apr 2022
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class SegmentationMachine Learning for Biomedical Imaging (MLBI), 2021
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
139
12
0
22 Sep 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and ChallengesInformation Fusion (Inf. Fusion), 2020
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
722
2,189
0
12 Nov 2020
U-Net and its variants for medical image segmentation: theory and
  applications
U-Net and its variants for medical image segmentation: theory and applicationsIEEE Access (IEEE Access), 2020
N. Siddique
Sidike Paheding
Colin P. Elkin
Vijay Devabhaktuni
SSeg
233
1,320
0
02 Nov 2020
An amplified-target loss approach for photoreceptor layer segmentation
  in pathological OCT scans
An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans
J. Orlando
Anna Breger
Hrvoje Bogunović
Sophie Riedl
Bianca S. Gerendas
Martin Ehler
U. Schmidt-Erfurth
MedIm
108
4
0
02 Aug 2019
Bayesian Modelling in Practice: Using Uncertainty to Improve
  Trustworthiness in Medical Applications
Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications
David Ruhe
Giovanni Cina
Michele Tonutti
D. D. Bruin
Paul Elbers
OOD
98
14
0
20 Jun 2019
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly
  Detection in Retinal OCT
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCTIEEE Transactions on Medical Imaging (TMI), 2019
Philipp Seeböck
J. Orlando
T. Schlegl
S. Waldstein
Hrvoje Bogunović
S. Klimscha
Georg Langs
U. Schmidt-Erfurth
UQCV
181
143
0
29 May 2019
1