ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08361
  4. Cited By
Learning Global Pairwise Interactions with Bayesian Neural Networks
v1v2v3 (latest)

Learning Global Pairwise Interactions with Bayesian Neural Networks

24 January 2019
Tianyu Cui
Pekka Marttinen
Samuel Kaski
    BDL
ArXiv (abs)PDFHTML

Papers citing "Learning Global Pairwise Interactions with Bayesian Neural Networks"

9 / 9 papers shown
Title
Error-controlled non-additive interaction discovery in machine learning models
Error-controlled non-additive interaction discovery in machine learning modelsNature Machine Intelligence (Nat. Mach. Intell.), 2024
Winston Chen
Yifan Jiang
William Stafford Noble
Yang Young Lu
301
2
0
17 Feb 2025
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
SmoothHess: ReLU Network Feature Interactions via Stein's LemmaNeural Information Processing Systems (NeurIPS), 2023
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
252
7
0
01 Nov 2023
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant SubspacesIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
352
26
0
30 Dec 2022
Toward Explainable AI for Regression Models
Toward Explainable AI for Regression ModelsIEEE Signal Processing Magazine (IEEE SPM), 2021
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
193
80
0
21 Dec 2021
Relate and Predict: Structure-Aware Prediction with Jointly Optimized
  Neural DAG
Relate and Predict: Structure-Aware Prediction with Jointly Optimized Neural DAG
Arshdeep Sekhon
Zhe Wang
Yanjun Qi
GNN
106
0
0
03 Mar 2021
High Dimensional Model Explanations: an Axiomatic Approach
High Dimensional Model Explanations: an Axiomatic Approach
Neel Patel
Martin Strobel
Yair Zick
FAtt
138
23
0
16 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
327
86
0
17 Mar 2020
Building and Interpreting Deep Similarity Models
Building and Interpreting Deep Similarity ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Oliver Eberle
Jochen Büttner
Florian Kräutli
K. Müller
Matteo Valleriani
G. Montavon
146
76
0
11 Mar 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep
  Networks
Explaining Explanations: Axiomatic Feature Interactions for Deep NetworksJournal of machine learning research (JMLR), 2020
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
590
167
0
10 Feb 2020
1