ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08396
  4. Cited By
Self-Supervised Deep Learning on Point Clouds by Reconstructing Space

Self-Supervised Deep Learning on Point Clouds by Reconstructing Space

24 January 2019
Jonathan Sauder
Bjarne Sievers
    3DPC
ArXivPDFHTML

Papers citing "Self-Supervised Deep Learning on Point Clouds by Reconstructing Space"

10 / 10 papers shown
Title
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
Ayumu Saito
Prachi Kudeshia
Jiju Poovvancheri
3DPC
37
7
0
25 Apr 2024
Weakly-Supervised Semantic Segmentation of Ships Using Thermal Imagery
Weakly-Supervised Semantic Segmentation of Ships Using Thermal Imagery
Rushil Joshi
Ethan R. Adams
Matthew R. Ziemann
Christopher A. Metzler
28
1
0
26 Dec 2022
SnapshotNet: Self-supervised Feature Learning for Point Cloud Data
  Segmentation Using Minimal Labeled Data
SnapshotNet: Self-supervised Feature Learning for Point Cloud Data Segmentation Using Minimal Labeled Data
Xingye Li
Ling Zhang
Zhigang Zhu
3DPC
20
10
0
13 Jan 2022
MaskNet: A Fully-Convolutional Network to Estimate Inlier Points
MaskNet: A Fully-Convolutional Network to Estimate Inlier Points
Vinit Sarode
Animesh Dhagat
Rangaprasad Arun Srivatsan
N. Zevallos
Simon Lucey
Howie Choset
3DPC
46
29
0
19 Oct 2020
Info3D: Representation Learning on 3D Objects using Mutual Information
  Maximization and Contrastive Learning
Info3D: Representation Learning on 3D Objects using Mutual Information Maximization and Contrastive Learning
Aditya Sanghi
3DPC
SSL
11
101
0
04 Jun 2020
Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
Ying Li
Lingfei Ma
Zilong Zhong
Fei Liu
Dongpu Cao
Jonathan Li
M. Chapman
3DPC
36
390
0
20 May 2020
A review on deep learning techniques for 3D sensed data classification
A review on deep learning techniques for 3D sensed data classification
David J. Griffiths
Jan Boehm
3DPC
3DV
25
165
0
09 Jul 2019
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Iro Armeni
S. Sax
Amir Zamir
Silvio Savarese
3DV
3DPC
113
875
0
03 Feb 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
171
1,940
0
24 Oct 2016
1