Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08665
Cited By
Fairness risk measures
24 January 2019
Robert C. Williamson
A. Menon
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fairness risk measures"
34 / 34 papers shown
Title
Federated Learning with Relative Fairness
Shogo H. Nakakita
Tatsuya Kaneko
Shinya Takamaeda-Yamazaki
Masaaki Imaizumi
FedML
39
2
0
02 Nov 2024
Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity
Quan Nguyen
Nishant A. Mehta
Cristóbal Guzmán
39
1
0
01 Oct 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
47
0
0
19 Jul 2024
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
48
17
0
01 Jul 2024
Semi-Variance Reduction for Fair Federated Learning
Saber Malekmohammadi
Yaoliang Yu
FedML
80
1
0
23 Jun 2024
An Axiomatic Approach to Loss Aggregation and an Adapted Aggregating Algorithm
Armando J. Cabrera Pacheco
Rabanus Derr
Robert C. Williamson
46
0
0
04 Jun 2024
AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
Li Lin
Santosh
Xin Eric Wang
Shu Hu
Shu Hu
EGVM
86
11
0
02 Jun 2024
Fast Computation of Superquantile-Constrained Optimization Through Implicit Scenario Reduction
Jake Roth
Ying Cui
31
2
0
13 May 2024
Fairness Risks for Group-conditionally Missing Demographics
Kaiqi Jiang
Wenzhe Fan
Mao Li
Xinhua Zhang
105
0
0
20 Feb 2024
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
Thomas P. Zollo
Todd Morrill
Zhun Deng
Jake C. Snell
T. Pitassi
Richard Zemel
45
8
0
22 Nov 2023
A Model-Based Method for Minimizing CVaR and Beyond
S. Meng
Robert Mansel Gower
23
4
0
27 May 2023
On the Richness of Calibration
Benedikt Höltgen
Robert C. Williamson
13
9
0
08 Feb 2023
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
42
6
0
10 Dec 2022
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Yoav Wald
G. Yona
Uri Shalit
Y. Carmon
24
6
0
28 Nov 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
40
32
0
18 Jul 2022
(Im)possibility of Collective Intelligence
Krikamol Muandet
40
6
0
05 Jun 2022
Optimizing generalized Gini indices for fairness in rankings
Virginie Do
Nicolas Usunier
15
29
0
02 Apr 2022
Exploring the Unfairness of DP-SGD Across Settings
Frederik Noe
R. Herskind
Anders Søgaard
27
4
0
24 Feb 2022
Fair Wrapping for Black-box Predictions
Alexander Soen
Ibrahim M. Alabdulmohsin
Sanmi Koyejo
Yishay Mansour
Nyalleng Moorosi
Richard Nock
Ke Sun
Lexing Xie
FaML
51
6
0
31 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
21
67
0
04 Jan 2022
A Survey of Learning Criteria Going Beyond the Usual Risk
Matthew J. Holland
Kazuki Tanabe
FaML
29
4
0
11 Oct 2021
Fairness Through Counterfactual Utilities
Jack Blandin
Ian A. Kash
FaML
38
2
0
11 Aug 2021
Teacher's pet: understanding and mitigating biases in distillation
Michal Lukasik
Srinadh Bhojanapalli
A. Menon
Sanjiv Kumar
18
25
0
19 Jun 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
36
94
0
02 Mar 2021
Achieving Efficiency in Black Box Simulation of Distribution Tails with Self-structuring Importance Samplers
Anand Deo
Karthyek Murthy
30
10
0
14 Feb 2021
Device Sampling for Heterogeneous Federated Learning: Theory, Algorithms, and Implementation
Su Wang
Mengyuan Lee
Seyyedali Hosseinalipour
Roberto Morabito
M. Chiang
Christopher G. Brinton
FedML
85
110
0
04 Jan 2021
Active Deep Learning on Entity Resolution by Risk Sampling
Youcef Nafa
Qun Chen
Zhaoqiang Chen
Xingyu Lu
Haiyang He
Tianyi Duan
Zhanhuai Li
10
16
0
23 Dec 2020
Coping with Label Shift via Distributionally Robust Optimisation
J.N. Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
24
70
0
23 Oct 2020
Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic Multi-Objective Approach
Suyun Liu
Luis Nunes Vicente
FaML
29
68
0
03 Aug 2020
Learning Bounds for Risk-sensitive Learning
Jaeho Lee
Sejun Park
Jinwoo Shin
25
46
0
15 Jun 2020
Projection to Fairness in Statistical Learning
Thibaut Le Gouic
Jean-Michel Loubes
Philippe Rigollet
33
3
0
24 May 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
908
0
02 Mar 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
24
52
0
28 Oct 2019
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
114
49
0
19 Jul 2015
1