Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09847
Cited By
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
28 January 2019
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Error Feedback Fixes SignSGD and other Gradient Compression Schemes"
50 / 87 papers shown
Title
Convergence Analysis of Asynchronous Federated Learning with Gradient Compression for Non-Convex Optimization
Diying Yang
Yingwei Hou
Danyang Xiao
Weigang Wu
FedML
39
0
0
28 Apr 2025
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
49
0
0
11 Mar 2025
On the Byzantine Fault Tolerance of signSGD with Majority Vote
Emanuele Mengoli
Luzius Moll
Virgilio Strozzi
El-Mahdi El-Mhamdi
AAML
FedML
60
0
0
26 Feb 2025
Distributed Sign Momentum with Local Steps for Training Transformers
Shuhua Yu
Ding Zhou
Cong Xie
An Xu
Zhi-Li Zhang
Xin Liu
S. Kar
66
0
0
26 Nov 2024
Trustworthiness of Stochastic Gradient Descent in Distributed Learning
Hongyang Li
Caesar Wu
Mohammed Chadli
Said Mammar
Pascal Bouvry
48
1
0
28 Oct 2024
LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics
Thomas Robert
M. Safaryan
Ionut-Vlad Modoranu
Dan Alistarh
ODL
31
2
0
21 Oct 2024
From Gradient Clipping to Normalization for Heavy Tailed SGD
Florian Hübler
Ilyas Fatkhullin
Niao He
40
5
0
17 Oct 2024
Communication-efficient Vertical Federated Learning via Compressed Error Feedback
Pedro Valdeira
João Xavier
Cláudia Soares
Yuejie Chi
FedML
39
4
0
20 Jun 2024
BOLD: Boolean Logic Deep Learning
Van Minh Nguyen
Cristian Ocampo
Aymen Askri
Louis Leconte
Ba-Hien Tran
AI4CE
37
0
0
25 May 2024
SADDLe: Sharpness-Aware Decentralized Deep Learning with Heterogeneous Data
Sakshi Choudhary
Sai Aparna Aketi
Kaushik Roy
FedML
45
0
0
22 May 2024
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
40
1
0
25 Mar 2024
RS-DGC: Exploring Neighborhood Statistics for Dynamic Gradient Compression on Remote Sensing Image Interpretation
Weiying Xie
Zixuan Wang
Jitao Ma
Daixun Li
Yunsong Li
30
0
0
29 Dec 2023
Straggler-resilient Federated Learning: Tackling Computation Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network
Student Member Ieee Hongda Wu
F. I. C. V. Ping Wang
Aswartha Narayana
FedML
44
1
0
16 Nov 2023
AirFL-Mem: Improving Communication-Learning Trade-Off by Long-Term Memory
Haifeng Wen
Hong Xing
Osvaldo Simeone
32
0
0
25 Oct 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
18
1
0
24 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
40
5
0
15 Oct 2023
Asynchronous Federated Learning with Bidirectional Quantized Communications and Buffered Aggregation
Tomàs Ortega
Hamid Jafarkhani
FedML
23
6
0
01 Aug 2023
Revolutionizing Wireless Networks with Federated Learning: A Comprehensive Review
Sajjad Emdadi Mahdimahalleh
AI4CE
30
0
0
01 Aug 2023
Clip21: Error Feedback for Gradient Clipping
Sarit Khirirat
Eduard A. Gorbunov
Samuel Horváth
Rustem Islamov
Fakhri Karray
Peter Richtárik
27
10
0
30 May 2023
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
23
2
0
24 May 2023
Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods
Junchi Yang
Xiang Li
Ilyas Fatkhullin
Niao He
34
15
0
21 May 2023
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training
S. Tyagi
Martin Swany
25
4
0
20 May 2023
Communication and Energy Efficient Wireless Federated Learning with Intrinsic Privacy
Zhenxiao Zhang
Yuanxiong Guo
Yuguang Fang
Yanmin Gong
28
4
0
15 Apr 2023
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
32
4
0
25 Nov 2022
Fast Adaptive Federated Bilevel Optimization
Feihu Huang
FedML
20
7
0
02 Nov 2022
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
24
12
0
31 Oct 2022
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
33
9
0
26 Oct 2022
FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings
Junyi Li
Heng-Chiao Huang
FedML
24
6
0
25 Oct 2022
Communication-Efficient Adam-Type Algorithms for Distributed Data Mining
Wenhan Xian
Feihu Huang
Heng-Chiao Huang
FedML
25
0
0
14 Oct 2022
Downlink Compression Improves TopK Sparsification
William Zou
H. Sterck
Jun Liu
18
0
0
30 Sep 2022
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
32
46
0
23 Aug 2022
Efficient-Adam: Communication-Efficient Distributed Adam
Congliang Chen
Li Shen
Wei Liu
Z. Luo
23
19
0
28 May 2022
Communication-Efficient Adaptive Federated Learning
Yujia Wang
Lu Lin
Jinghui Chen
FedML
21
70
0
05 May 2022
FedVQCS: Federated Learning via Vector Quantized Compressed Sensing
Yong-Nam Oh
Yo-Seb Jeon
Mingzhe Chen
Walid Saad
FedML
17
10
0
16 Apr 2022
Convert, compress, correct: Three steps toward communication-efficient DNN training
Zhongzhu Chen
Eduin E. Hernandez
Yu-Chih Huang
Stefano Rini
15
0
0
17 Mar 2022
Linear Stochastic Bandits over a Bit-Constrained Channel
A. Mitra
Hamed Hassani
George J. Pappas
34
8
0
02 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
47
0
15 Feb 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
24
20
0
12 Feb 2022
BEER: Fast
O
(
1
/
T
)
O(1/T)
O
(
1/
T
)
Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao
Boyue Li
Zhize Li
Peter Richtárik
Yuejie Chi
19
48
0
31 Jan 2022
Communication-Efficient Distributed Learning via Sparse and Adaptive Stochastic Gradient
Xiaoge Deng
Dongsheng Li
Tao Sun
Xicheng Lu
FedML
18
0
0
08 Dec 2021
Distributed Adaptive Learning Under Communication Constraints
Marco Carpentiero
Vincenzo Matta
A. H. Sayed
22
17
0
03 Dec 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
24
14
0
01 Nov 2021
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
28
46
0
11 Oct 2021
Comfetch: Federated Learning of Large Networks on Constrained Clients via Sketching
Tahseen Rabbani
Brandon Yushan Feng
Marco Bornstein
Kyle Rui Sang
Yifan Yang
Arjun Rajkumar
A. Varshney
Furong Huang
FedML
51
2
0
17 Sep 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
22
45
0
19 Aug 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
19
9
0
10 Aug 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
43
54
0
02 Aug 2021
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
24
56
0
29 Jul 2021
1
2
Next