Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.10080
Cited By
v1
v2
v3 (latest)
General Fair Empirical Risk Minimization
29 January 2019
L. Oneto
Michele Donini
Massimiliano Pontil
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"General Fair Empirical Risk Minimization"
16 / 16 papers shown
Title
Evaluating Fairness and Mitigating Bias in Machine Learning: A Novel Technique using Tensor Data and Bayesian Regression
Kuniko Paxton
Koorosh Aslansefat
Dhavalkumar Thakker
Y. Papadopoulos
22
0
0
13 Jun 2025
Properties of fairness measures in the context of varying class imbalance and protected group ratios
D. Brzezinski
Julia Stachowiak
Jerzy Stefanowski
Izabela Szczech
R. Susmaga
Sofya Aksenyuk
Uladzimir Ivashka
Oleksandr Yasinskyi
250
6
0
13 Nov 2024
Mean Parity Fair Regression in RKHS
Shaokui Wei
Jiayin Liu
Bing Li
H. Zha
56
3
0
21 Feb 2023
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
109
177
0
14 Jul 2022
Fair Generalized Linear Models with a Convex Penalty
Hyungrok Do
Preston J. Putzel
Axel Martin
Padhraic Smyth
Judy Zhong
FaML
68
14
0
18 Jun 2022
Learning to Teach Fairness-aware Deep Multi-task Learning
Arjun Roy
Eirini Ntoutsi
76
7
0
16 Jun 2022
Marrying Fairness and Explainability in Supervised Learning
Przemyslaw A. Grabowicz
Nicholas Perello
Aarshee Mishra
FaML
92
45
0
06 Apr 2022
Fairness-Aware Naive Bayes Classifier for Data with Multiple Sensitive Features
Stelios Boulitsakis-Logothetis
FaML
83
5
0
23 Feb 2022
Assessing Fairness in the Presence of Missing Data
Yiliang Zhang
Q. Long
FaML
65
36
0
07 Dec 2021
Selective Regression Under Fairness Criteria
Abhin Shah
Yuheng Bu
Joshua K. Lee
Subhro Das
Yikang Shen
P. Sattigeri
G. Wornell
114
28
0
28 Oct 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
324
500
0
31 Dec 2020
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
97
108
0
12 Jun 2020
Optimization Hierarchy for Fair Statistical Decision Problems
A. Aswani
Matt Olfat
58
3
0
18 Oct 2019
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
117
25
0
27 Jun 2019
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
88
19
0
25 Jun 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
227
87
0
12 Jun 2019
1