ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10603
  4. Cited By
Numerically Recovering the Critical Points of a Deep Linear Autoencoder

Numerically Recovering the Critical Points of a Deep Linear Autoencoder

29 January 2019
Charles G. Frye
Neha S. Wadia
M. DeWeese
K. Bouchard
ArXivPDFHTML

Papers citing "Numerically Recovering the Critical Points of a Deep Linear Autoencoder"

1 / 1 papers shown
Title
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep
  Network Losses
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
13
2
0
23 Mar 2020
1