Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.11409
Cited By
Semantic Redundancies in Image-Classification Datasets: The 10% You Don't Need
29 January 2019
Vighnesh Birodkar
H. Mobahi
Samy Bengio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semantic Redundancies in Image-Classification Datasets: The 10% You Don't Need"
10 / 10 papers shown
Title
Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation
Thomas Kerdreux
A. Tuel
Quentin Febvre
A. Mouche
Bertrand Chapron
73
0
0
09 Apr 2025
An Empirical Comparison of Video Frame Sampling Methods for Multi-Modal RAG Retrieval
Mahesh Kandhare
Thibault Gisselbrecht
35
5
0
22 Jul 2024
DEFT: Data Efficient Fine-Tuning for Pre-Trained Language Models via Unsupervised Core-Set Selection
Devleena Das
Vivek Khetan
23
0
0
25 Oct 2023
Evaluating the effect of data augmentation and BALD heuristics on distillation of Semantic-KITTI dataset
Ngoc Phuong Anh Duong
Alexandre Almin
Léo Lemarié
B. R. Kiran
27
0
0
21 Feb 2023
LiDAR dataset distillation within bayesian active learning framework: Understanding the effect of data augmentation
Ngoc Phuong Anh Duong
Alexandre Almin
Léo Lemarié
B. R. Kiran
15
3
0
06 Feb 2022
How Low Can We Go? Pixel Annotation for Semantic Segmentation
Daniel Kigli
Ariel Shamir
S. Avidan
VLM
21
1
0
25 Jan 2022
On Training Instance Selection for Few-Shot Neural Text Generation
Ernie Chang
Xiaoyu Shen
Hui-Syuan Yeh
Vera Demberg
27
40
0
07 Jul 2021
Sequential Graph Convolutional Network for Active Learning
Razvan Caramalau
Binod Bhattarai
Tae-Kyun Kim
GNN
16
118
0
18 Jun 2020
Sampling Bias in Deep Active Classification: An Empirical Study
Ameya Prabhu
Charles Dognin
M. Singh
11
64
0
20 Sep 2019
Imbalance Problems in Object Detection: A Review
Kemal Oksuz
Baris Can Cam
Sinan Kalkan
Emre Akbas
ObjD
16
458
0
31 Aug 2019
1