Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00450
Cited By
v1
v2
v3
v4 (latest)
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
1 February 2019
Ioana Bica
Ahmed Alaa
M. Schaar
BDL
CML
AI4TS
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders"
35 / 35 papers shown
Title
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Yahya Aalaila
Gerrit Großmann
Sumantrak Mukherjee
Jonas Wahl
Sebastian Vollmer
CML
LRM
140
0
0
31 Mar 2025
DeCaFlow: A Deconfounding Causal Generative Model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
69
0
0
19 Mar 2025
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
73
2
0
01 Mar 2024
Right on Time: Revising Time Series Models by Constraining their Explanations
Maurice Kraus
David Steinmann
Antonia Wüst
Andre Kokozinski
Kristian Kersting
AI4TS
74
4
0
20 Feb 2024
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Daniel Jarrett
Jinsung Yoon
Ioana Bica
Zhaozhi Qian
A. Ercole
M. Schaar
AI4TS
87
36
0
28 Oct 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
212
2
0
16 Oct 2023
CTP:A Causal Interpretable Model for Non-Communicable Disease Progression Prediction
Zhoujian Sun
Wenzhuo Zhang
Zhengxing Huang
Nai Ding
Cheng Luo
CML
91
2
0
18 Aug 2023
Deep Causal Learning for Robotic Intelligence
Yongqian Li
CML
73
5
0
23 Dec 2022
On How AI Needs to Change to Advance the Science of Drug Discovery
Kieran Didi
Matej Zečević
CML
62
1
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
119
11
0
07 Nov 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
70
22
0
08 Oct 2022
Time Series Causal Link Estimation under Hidden Confounding using Knockoff Interventions
V. T. Trifunov
M. Shadaydeh
Joachim Denzler
CML
BDL
59
3
0
23 Sep 2022
Estimating individual treatment effects under unobserved confounding using binary instruments
Dennis Frauen
Stefan Feuerriegel
CML
85
20
0
17 Aug 2022
Variational Temporal Deconfounder for Individualized Treatment Effect Estimation from Longitudinal Observational Data
Zheng Feng
M. Prosperi
Jiang Bian
CML
42
0
0
23 Jul 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
57
52
0
16 Jun 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
90
5
0
19 May 2022
Estimating average causal effects from patient trajectories
Dennis Frauen
Tobias Hatt
Valentyn Melnychuk
Stefan Feuerriegel
OOD
CML
95
25
0
02 Mar 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
90
32
0
25 Feb 2022
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
61
2
0
10 Dec 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
94
22
0
06 Dec 2021
A Taxonomy for Inference in Causal Model Families
Matej Zevcević
Devendra Singh Dhami
Kristian Kersting
76
1
0
22 Oct 2021
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
Devendra Singh Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
134
56
0
09 Sep 2021
DeepExpress: Heterogeneous and Coupled Sequence Modeling for Express Delivery Prediction
Siyuan Ren
Bin Guo
LongBing Cao
Ke Li
Jiaqi Liu
Zhiwen Yu
40
8
0
18 Aug 2021
Adaptive Multi-Source Causal Inference
Thanh Vinh Vo
Pengfei Wei
T. Hoang
Tze-Yun Leong
87
1
0
31 May 2021
Federated Estimation of Causal Effects from Observational Data
Thanh Vinh Vo
T. Hoang
Young Lee
Tze-Yun Leong
FedML
CML
70
13
0
31 May 2021
Sequential Deconfounding for Causal Inference with Unobserved Confounders
Tobias Hatt
Stefan Feuerriegel
CML
95
29
0
16 Apr 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
60
16
0
20 Mar 2021
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
155
322
0
22 Feb 2021
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
Matej Zečević
Devendra Singh Dhami
Athresh Karanam
S. Natarajan
Kristian Kersting
CML
TPM
89
33
0
20 Feb 2021
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CML
AI4TS
106
110
0
11 Feb 2021
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
90
27
0
27 Aug 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
90
106
0
27 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
117
516
0
05 Feb 2020
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
136
1
0
03 Apr 2019
Weighted Tensor Completion for Time-Series Causal Inference
Debmalya Mandal
David C. Parkes
19
2
0
12 Feb 2019
1