ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00925
  4. Cited By
Bayesian semi-supervised learning for uncertainty-calibrated prediction
  of molecular properties and active learning

Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning

3 February 2019
Yao Zhang
A. Lee
ArXivPDFHTML

Papers citing "Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning"

14 / 14 papers shown
Title
Uncertainty in Graph Neural Networks: A Survey
Uncertainty in Graph Neural Networks: A Survey
Fangxin Wang
Yuqing Liu
Kay Liu
Yibo Wang
Sourav Medya
Philip S. Yu
AI4CE
48
8
0
11 Mar 2024
Uncertainty-Aware Robust Learning on Noisy Graphs
Uncertainty-Aware Robust Learning on Noisy Graphs
Shuyi Chen
Kaize Ding
Shixiang Zhu
11
5
0
14 Jun 2023
Tyger: Task-Type-Generic Active Learning for Molecular Property
  Prediction
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
Kuangqi Zhou
Kaixin Wang
Jiashi Feng
Jian Tang
Tingyang Xu
Xinchao Wang
29
1
0
23 May 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
80
0
26 Oct 2021
Distributed Representations of Atoms and Materials for Machine Learning
Distributed Representations of Atoms and Materials for Machine Learning
Luis M. Antunes
R. Grau‐Crespo
K. Butler
AI4CE
8
26
0
30 Jul 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
22
35
0
07 May 2021
Gaussian Process Molecule Property Prediction with FlowMO
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
18
23
0
02 Oct 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
625
0
01 Jul 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
25
13
0
28 Jun 2020
A comprehensive study on the prediction reliability of graph neural
  networks for virtual screening
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
Predicting materials properties without crystal structure: Deep
  representation learning from stoichiometry
Predicting materials properties without crystal structure: Deep representation learning from stoichiometry
Rhys E. A. Goodall
A. Lee
13
253
0
01 Oct 2019
Concepts and Applications of Conformal Prediction in Computational Drug
  Discovery
Concepts and Applications of Conformal Prediction in Computational Drug Discovery
I. Cortés-Ciriano
A. Bender
24
42
0
09 Aug 2019
Reliable Prediction Errors for Deep Neural Networks Using Test-Time
  Dropout
Reliable Prediction Errors for Deep Neural Networks Using Test-Time Dropout
I. Cortés-Ciriano
A. Bender
OOD
31
47
0
12 Apr 2019
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
1