ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01384
  4. Cited By
Generalization Error Bounds of Gradient Descent for Learning
  Over-parameterized Deep ReLU Networks

Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks

4 February 2019
Yuan Cao
Quanquan Gu
    ODL
    MLT
    AI4CE
ArXivPDFHTML

Papers citing "Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks"

34 / 34 papers shown
Title
Learn Sharp Interface Solution by Homotopy Dynamics
Learn Sharp Interface Solution by Homotopy Dynamics
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
ODL
57
1
0
01 Feb 2025
An Improved Finite-time Analysis of Temporal Difference Learning with
  Deep Neural Networks
An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
Zhifa Ke
Zaiwen Wen
Junyu Zhang
29
0
0
07 May 2024
Understanding Emergent Abilities of Language Models from the Loss Perspective
Understanding Emergent Abilities of Language Models from the Loss Perspective
Zhengxiao Du
Aohan Zeng
Yuxiao Dong
Jie Tang
UQCV
LRM
62
46
0
23 Mar 2024
Differentially Private Non-convex Learning for Multi-layer Neural
  Networks
Differentially Private Non-convex Learning for Multi-layer Neural Networks
Hanpu Shen
Cheng-Long Wang
Zihang Xiang
Yiming Ying
Di Wang
35
7
0
12 Oct 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
34
1
0
13 Sep 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable
  Data
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
Gauss-Newton Temporal Difference Learning with Nonlinear Function
  Approximation
Gauss-Newton Temporal Difference Learning with Nonlinear Function Approximation
Zhifa Ke
Junyu Zhang
Zaiwen Wen
19
0
0
25 Feb 2023
On the optimization and generalization of overparameterized implicit
  neural networks
On the optimization and generalization of overparameterized implicit neural networks
Tianxiang Gao
Hongyang Gao
MLT
AI4CE
19
3
0
30 Sep 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization
  and Sampling Complexity
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
24
3
0
02 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Convergence of gradient descent for deep neural networks
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Pixelated Butterfly: Simple and Efficient Sparse training for Neural
  Network Models
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Tri Dao
Beidi Chen
Kaizhao Liang
Jiaming Yang
Zhao-quan Song
Atri Rudra
Christopher Ré
27
75
0
30 Nov 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
  Trained by Gradient Descent
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
17
25
0
25 Jun 2021
A proof of convergence for gradient descent in the training of
  artificial neural networks for constant target functions
A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions
Patrick Cheridito
Arnulf Jentzen
Adrian Riekert
Florian Rossmannek
23
24
0
19 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial
  Training
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
11
11
0
22 Dec 2020
Feature Space Singularity for Out-of-Distribution Detection
Feature Space Singularity for Out-of-Distribution Detection
Haiwen Huang
Zhihan Li
Lulu Wang
Sishuo Chen
Bin Dong
Xinyu Zhou
OODD
20
65
0
30 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the
  Face of Large State Spaces
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
18
18
0
09 Nov 2020
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data
  Efficiency and Imperfect Teacher
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher
Guangda Ji
Zhanxing Zhu
53
42
0
20 Oct 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
26
79
0
17 Sep 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
15
42
0
02 Aug 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive
  Learning
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Lucas Fidon
Michael Aertsen
Thomas Deprest
Doaa Emam
Frédéric Guffens
...
Andrew Melbourne
Sébastien Ourselin
Jan Deprest
Georg Langs
Tom Kamiel Magda Vercauteren
OOD
17
10
0
08 Jan 2020
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
23
214
0
03 Dec 2019
Neural Contextual Bandits with UCB-based Exploration
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
22
15
0
11 Nov 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
9
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
11
116
0
03 Oct 2019
A type of generalization error induced by initialization in deep neural
  networks
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
49
0
19 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
24
899
0
26 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network
  Model with Skip-connections
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
27
22
0
10 Apr 2019
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets,
  and Beyond
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis D. Haupt
T. Zhao
25
78
0
13 Jun 2018
Global optimality conditions for deep neural networks
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
121
117
0
08 Jul 2017
Benefits of depth in neural networks
Benefits of depth in neural networks
Matus Telgarsky
133
602
0
14 Feb 2016
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
119
577
0
27 Feb 2015
Learning without Concentration
Learning without Concentration
S. Mendelson
85
334
0
01 Jan 2014
1