Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1902.02767
Cited By
v1
v2 (latest)
Hybrid Models with Deep and Invertible Features
7 February 2019
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDL
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hybrid Models with Deep and Invertible Features"
50 / 57 papers shown
HybridFlow: Quantification of Aleatoric and Epistemic Uncertainty with a Single Hybrid Model
Peter Van Katwyk
Karianne J. Bergen
196
0
0
06 Oct 2025
Measurement to Meaning: A Validity-Centered Framework for AI Evaluation
Olawale Salaudeen
Anka Reuel
Ahmed M. Ahmed
Suhana Bedi
Zachary Robertson
Siyang Song
Ben Domingue
Angelina Wang
Sanmi Koyejo
ELM
407
0
0
13 May 2025
FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning
Saandeep Aathreya
Shaun J. Canavan
OODD
287
4
0
03 Jul 2024
Navigating Tabular Data Synthesis Research: Understanding User Needs and Tool Capabilities
Maria F. Davila
Sven Groen
Fabian Panse
Wolfram Wingerath
LMTD
218
7
0
31 May 2024
A Causal Framework for Evaluating Deferring Systems
Filippo Palomba
Andrea Pugnana
Jose M. Alvarez
Salvatore Ruggieri
CML
420
9
0
29 May 2024
Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification Methods
Jiaxin Zhang
Kamalika Das
Kumar Sricharan
UQCV
180
2
0
20 Feb 2024
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Conference on Robot Learning (CoRL), 2023
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
248
7
0
11 Nov 2023
MixerFlow: MLP-Mixer meets Normalising Flows
Eshant English
Matthias Kirchler
Yingzhen Li
TPM
229
0
0
25 Oct 2023
On the Approximation of Bi-Lipschitz Maps by Invertible Neural Networks
Neural Networks (Neural Netw.), 2023
Bangti Jin
Zehui Zhou
Jun Zou
271
4
0
18 Aug 2023
DejaVu: Conditional Regenerative Learning to Enhance Dense Prediction
Computer Vision and Pattern Recognition (CVPR), 2023
Shubhankar Borse
Debasmit Das
Hyojin Park
H. Cai
Risheek Garrepalli
Fatih Porikli
323
10
0
02 Mar 2023
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers
Neural Information Processing Systems (NeurIPS), 2022
Wanqian Yang
Polina Kirichenko
Micah Goldblum
A. Wilson
DRL
234
14
0
28 Nov 2022
GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models
Neural Information Processing Systems (NeurIPS), 2022
Chen Liang
Wenguan Wang
Jiaxu Miao
Yi Yang
VLM
270
157
0
05 Oct 2022
Saliency Guided Adversarial Training for Learning Generalizable Features with Applications to Medical Imaging Classification System
Xin Li
Yao Qiang
Chengyin Li
Sijia Liu
D. Zhu
OOD
MedIm
235
4
0
09 Sep 2022
Fix-A-Step: Semi-supervised Learning from Uncurated Unlabeled Data
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Zhe Huang
Mary-Joy Sidhom
B. Wessler
M. C. Hughes
220
13
0
25 Aug 2022
Your ViT is Secretly a Hybrid Discriminative-Generative Diffusion Model
Xiulong Yang
Sheng-Min Shih
Yinlin Fu
Xiaoting Zhao
Shihao Ji
DiffM
262
62
0
16 Aug 2022
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities
International Conference on Machine Learning (ICML), 2022
Julian Bitterwolf
Alexander Meinke
Maximilian Augustin
Matthias Hein
OODD
241
32
0
20 Jun 2022
Universal approximation property of invertible neural networks
Journal of machine learning research (JMLR), 2022
Isao Ishikawa
Takeshi Teshima
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
219
35
0
15 Apr 2022
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback
Yuntao Bai
Andy Jones
Kamal Ndousse
Amanda Askell
Anna Chen
...
Jack Clark
Sam McCandlish
C. Olah
Benjamin Mann
Jared Kaplan
974
3,520
0
12 Apr 2022
Deep Generative Models for Vehicle Speed Trajectories
F. Behnia
D. Karbowski
Vadim Sokolov
161
2
0
14 Dec 2021
Autoregressive Quantile Flows for Predictive Uncertainty Estimation
Phillip Si
Allan Bishop
Volodymyr Kuleshov
BDL
UQCV
AI4TS
441
22
0
09 Dec 2021
A Unified Benchmark for the Unknown Detection Capability of Deep Neural Networks
Jihyo Kim
Jiin Koo
Sangheum Hwang
UQCV
319
23
0
01 Dec 2021
Types of Out-of-Distribution Texts and How to Detect Them
Udit Arora
William Huang
He He
OODD
491
113
0
14 Sep 2021
Machine Learning with a Reject Option: A survey
Machine-mediated learning (ML), 2021
Kilian Hendrickx
Lorenzo Perini
Dries Van der Plas
Wannes Meert
Jesse Davis
MU
333
160
0
23 Jul 2021
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
159
33
0
05 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
389
71
0
01 Jul 2021
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Polina Kirichenko
Mehrdad Farajtabar
Dushyant Rao
Balaji Lakshminarayanan
Nir Levine
Ang Li
Huiyi Hu
A. Wilson
Razvan Pascanu
VLM
BDL
CLL
140
23
0
24 Jun 2021
Densely connected normalizing flows
Neural Information Processing Systems (NeurIPS), 2021
Matej Grcić
Ivan Grubišić
Sinisa Segvic
TPM
339
64
0
08 Jun 2021
Exploring the Limits of Out-of-Distribution Detection
Neural Information Processing Systems (NeurIPS), 2021
Stanislav Fort
Jie Jessie Ren
Balaji Lakshminarayanan
587
398
0
06 Jun 2021
InversionNet3D: Efficient and Scalable Learning for 3D Full Waveform Inversion
IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021
Qili Zeng
Shihang Feng
B. Wohlberg
Youzuo Lin
285
30
0
25 Mar 2021
Data-driven Cloud Clustering via a Rotationally Invariant Autoencoder
IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021
Takuya Kurihana
Elisabeth Moyer
Rebecca Willett
Davis Gilton
Ian Foster
107
19
0
08 Mar 2021
Invertible DenseNets with Concatenated LipSwish
Neural Information Processing Systems (NeurIPS), 2021
Yura Perugachi-Diaz
Jakub M. Tomczak
Sandjai Bhulai
365
25
0
04 Feb 2021
On Batch Normalisation for Approximate Bayesian Inference
Jishnu Mukhoti
P. Dokania
Juil Sock
Y. Gal
BDL
UQCV
125
7
0
24 Dec 2020
Further Analysis of Outlier Detection with Deep Generative Models
Neural Information Processing Systems (NeurIPS), 2020
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
228
41
0
25 Oct 2020
Generative Classifiers as a Basis for Trustworthy Image Classification
Radek Mackowiak
Lynton Ardizzone
Ullrich Kothe
Carsten Rother
222
4
0
29 Jul 2020
Contrastive Training for Improved Out-of-Distribution Detection
Jim Winkens
Rudy Bunel
Abhijit Guha Roy
Robert Stanforth
Vivek Natarajan
...
Alan Karthikesalingam
Simon A. A. Kohl
taylan. cemgil
S. M. Ali Eslami
Olaf Ronneberger
OODD
390
259
0
10 Jul 2020
Learning the Prediction Distribution for Semi-Supervised Learning with Normalising Flows
Ivana Balazevic
Carl Allen
Timothy M. Hospedales
96
0
0
06 Jul 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
266
118
0
20 Jun 2020
Ordering Dimensions with Nested Dropout Normalizing Flows
Artur Bekasov
Iain Murray
DRL
156
6
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
412
113
0
15 Jun 2020
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDL
UQCV
258
0
0
11 Jun 2020
GAN-based Priors for Quantifying Uncertainty
Dhruv V. Patel
Assad A. Oberai
BDL
UQCV
114
7
0
27 Mar 2020
Hybrid Models for Open Set Recognition
European Conference on Computer Vision (ECCV), 2020
Hongjie Zhang
Ang Li
Jie Guo
Yanwen Guo
BDL
429
205
0
27 Mar 2020
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
International Conference on Machine Learning (ICML), 2020
Joost R. van Amersfoort
Lewis Smith
Yee Whye Teh
Y. Gal
UQCV
BDL
277
55
0
04 Mar 2020
VFlow: More Expressive Generative Flows with Variational Data Augmentation
International Conference on Machine Learning (ICML), 2020
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
199
62
0
22 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
306
93
0
17 Feb 2020
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification
Lynton Ardizzone
Radek Mackowiak
Ullrich Kothe
Carsten Rother
UQCV
357
4
0
17 Jan 2020
Semi-Supervised Learning with Normalizing Flows
International Conference on Machine Learning (ICML), 2019
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRL
BDL
163
131
0
30 Dec 2019
InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers
T. Nguyen
Animesh Garg
Richard G. Baraniuk
Anima Anandkumar
TPM
191
9
0
09 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Journal of machine learning research (JMLR), 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
741
2,083
0
05 Dec 2019
Cumulo: A Dataset for Learning Cloud Classes
Valentina Zantedeschi
F. Falasca
A. Douglas
Richard Strange
Matt J. Kusner
D. Watson‐Parris
178
31
0
05 Nov 2019
1
2
Next
Page 1 of 2