Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04420
Cited By
Learning interpretable continuous-time models of latent stochastic dynamical systems
12 February 2019
Lea Duncker
G. Bohner
Julien Boussard
M. Sahani
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning interpretable continuous-time models of latent stochastic dynamical systems"
19 / 19 papers shown
Title
Self-supervised contrastive learning performs non-linear system identification
Rodrigo González Laiz
Tobias Schmidt
Steffen Schneider
SSL
83
1
0
18 Oct 2024
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
130
3
0
19 Jul 2024
A projected nonlinear state-space model for forecasting time series signals
Christian Donner
Anuj Mishra
Hideaki Shimazaki
AI4TS
61
0
0
22 Nov 2023
Modeling Nonlinear Dynamics in Continuous Time with Inductive Biases on Decay Rates and/or Frequencies
Tomoharu Iwata
Yoshinobu Kawahara
AI4TS
AI4CE
91
0
0
26 Dec 2022
Mesoscopic modeling of hidden spiking neurons
Shuqiao Wang
Valentin Schmutz
G. Bellec
W. Gerstner
48
5
0
26 May 2022
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Çağatay Yıldız
M. Kandemir
Barbara Rakitsch
129
12
0
24 May 2022
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDL
AI4TS
AI4CE
150
20
0
04 Nov 2021
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems
Jimmy T.H. Smith
Scott W. Linderman
David Sussillo
119
30
0
01 Nov 2021
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
Feng Zhu
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
C. Pandarinath
72
10
0
29 Oct 2021
Learning Dynamical Systems from Noisy Sensor Measurements using Multiple Shooting
Armand Jordana
Justin Carpentier
Ludovic Righetti
AI4CE
83
5
0
22 Jun 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
76
16
0
21 Jun 2021
Moment-Based Variational Inference for Stochastic Differential Equations
C. Wildner
Heinz Koeppl
DiffM
45
4
0
01 Mar 2021
Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou
Xue-Xin Wei
DRL
262
84
0
09 Nov 2020
Point process models for sequence detection in high-dimensional neural spike trains
Alex H. Williams
Anthony Degleris
Yixin Wang
Scott W. Linderman
AI4TS
65
30
0
10 Oct 2020
Identifying Latent Stochastic Differential Equations
Ali Hasan
João M. Pereira
Sina Farsiu
Vahid Tarokh
DiffM
72
21
0
12 Jul 2020
Learning Dynamics Models with Stable Invariant Sets
Naoya Takeishi
Yoshinobu Kawahara
62
18
0
16 Jun 2020
Unifying and generalizing models of neural dynamics during decision-making
D. Zoltowski
Jonathan W. Pillow
Scott W. Linderman
46
8
0
13 Jan 2020
Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
203
35
0
30 Dec 2019
Enabling hyperparameter optimization in sequential autoencoders for spiking neural data
Mohammad Reza Keshtkaran
C. Pandarinath
69
37
0
21 Aug 2019
1