Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04495
Cited By
v1
v2
v3
v4
v5 (latest)
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
12 February 2019
T. Tony Cai
Yichen Wang
Linjun Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy"
50 / 111 papers shown
Title
Differentially Private Sparse Linear Regression with Heavy-tailed Responses
Xizhi Tian
Meng Ding
Touming Tao
Zihang Xiang
Di Wang
18
0
0
07 Jun 2025
Private Geometric Median in Nearly-Linear Time
Syamantak Kumar
Daogao Liu
Kevin Tian
Chutong Yang
FedML
35
0
0
26 May 2025
Optimal Piecewise-based Mechanism for Collecting Bounded Numerical Data under Local Differential Privacy
Ye Zheng
Sumita Mishra
Yidan Hu
36
0
0
21 May 2025
How Private is Your Attention? Bridging Privacy with In-Context Learning
Soham Bonnerjee
Zhen Wei
Yeon
Anna Asch
Sagnik Nandy
Promit Ghosal
105
0
0
22 Apr 2025
Optimal Differentially Private Sampling of Unbounded Gaussians
Valentio Iverson
Gautam Kamath
Argyris Mouzakis
81
0
0
03 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
111
0
0
03 Feb 2025
A Statistical Hypothesis Testing Framework for Data Misappropriation Detection in Large Language Models
Yinpeng Cai
Lexin Li
Linjun Zhang
473
1
0
05 Jan 2025
Distributed Differentially Private Data Analytics via Secure Sketching
Jakob Burkhardt
Hannah Keller
Claudio Orlandi
Chris Schwiegelshohn
FedML
162
0
0
30 Nov 2024
Privately Learning Smooth Distributions on the Hypercube by Projections
Clément Lalanne
Sébastien Gadat
72
1
0
16 Sep 2024
Learning with Shared Representations: Statistical Rates and Efficient Algorithms
Xiaochun Niu
Lili Su
Jiaming Xu
Pengkun Yang
FedML
68
2
0
07 Sep 2024
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
85
2
0
19 Aug 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
85
1
0
08 Aug 2024
On Differentially Private U Statistics
Kamalika Chaudhuri
Po-Ling Loh
Shourya Pandey
Purnamrita Sarkar
FedML
92
1
0
06 Jul 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
94
2
0
25 Jun 2024
Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
T. T. Cai
Abhinav Chakraborty
Lasse Vuursteen
FedML
83
3
0
10 Jun 2024
Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests
T. T. Cai
Abhinav Chakraborty
Lasse Vuursteen
FedML
77
2
0
10 Jun 2024
PriME: Privacy-aware Membership profile Estimation in networks
Abhinav Chakraborty
Sayak Chatterjee
Sagnik Nandy
119
1
0
04 Jun 2024
FLIPHAT: Joint Differential Privacy for High Dimensional Sparse Linear Bandits
Sunrit Chakraborty
Saptarshi Roy
Debabrota Basu
FedML
93
1
0
22 May 2024
Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares
Gavin Brown
J. Hayase
Samuel B. Hopkins
Weihao Kong
Xiyang Liu
Sewoong Oh
Juan C. Perdomo
Adam D. Smith
46
2
0
23 Apr 2024
Minimax density estimation in the adversarial framework under local differential privacy
Mélisande Albert
Juliette Chevallier
Béatrice Laurent
Ousmane Sacko
50
0
0
27 Mar 2024
Near-Optimal differentially private low-rank trace regression with guaranteed private initialization
Mengyue Zha
67
0
0
24 Mar 2024
Public-data Assisted Private Stochastic Optimization: Power and Limitations
Enayat Ullah
Michael Menart
Raef Bassily
Cristóbal Guzmán
Raman Arora
74
2
0
06 Mar 2024
Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation
Gavin Brown
Krishnamurthy Dvijotham
Georgina Evans
Daogao Liu
Adam D. Smith
Abhradeep Thakurta
91
6
0
21 Feb 2024
Personalized Differential Privacy for Ridge Regression
Krishna Acharya
Franziska Boenisch
Rakshit Naidu
Juba Ziani
40
2
0
30 Jan 2024
PrIsing: Privacy-Preserving Peer Effect Estimation via Ising Model
Abhinav Chakraborty
Anirban Chatterjee
Abhinandan Dalal
50
0
0
29 Jan 2024
General Inferential Limits Under Differential and Pufferfish Privacy
J. Bailie
Ruobin Gong
72
1
0
27 Jan 2024
Differentially Private Sliced Inverse Regression: Minimax Optimality and Algorithm
Xintao Xia
Linjun Zhang
Zhanrui Cai
78
0
0
16 Jan 2024
Efficient Sparse Least Absolute Deviation Regression with Differential Privacy
Weidong Liu
Xiaojun Mao
Xiaofei Zhang
Xin Zhang
55
2
0
02 Jan 2024
On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift
Pratiksha Thaker
Amrith Rajagopal Setlur
Zhiwei Steven Wu
Virginia Smith
88
2
0
24 Dec 2023
Differentially private projection-depth-based medians
Kelly Ramsay
Dylan Spicker
45
2
0
12 Dec 2023
Mean Estimation Under Heterogeneous Privacy Demands
Syomantak Chaudhuri
Konstantin Miagkov
T. Courtade
72
1
0
19 Oct 2023
Differentially Private Non-convex Learning for Multi-layer Neural Networks
Hanpu Shen
Cheng-Long Wang
Zihang Xiang
Yiming Ying
Di Wang
81
8
0
12 Oct 2023
On the Computational Complexity of Private High-dimensional Model Selection
Saptarshi Roy
Zehua Wang
Ambuj Tewari
63
0
0
11 Oct 2023
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model
Liyang Zhu
Meng Ding
Vaneet Aggarwal
Jinhui Xu
Di Wang
40
5
0
11 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
68
11
0
10 Oct 2023
On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence
Achraf Azize
Marc Jourdan
Aymen Al Marjani
D. Basu
84
4
0
05 Sep 2023
The Normal Distributions Indistinguishability Spectrum and its Application to Privacy-Preserving Machine Learning
Yun Lu
Malik Magdon-Ismail
Yu Wei
Vassilis Zikas
71
0
0
03 Sep 2023
Differentially Private Linear Regression with Linked Data
Shurong Lin
Elliot Paquette
E. D. Kolaczyk
66
1
0
01 Aug 2023
Smooth Lower Bounds for Differentially Private Algorithms via Padding-and-Permuting Fingerprinting Codes
Naty Peter
Eliad Tsfadia
Jonathan R. Ullman
96
5
0
14 Jul 2023
PLAN: Variance-Aware Private Mean Estimation
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
63
4
0
14 Jun 2023
Safeguarding Data in Multimodal AI: A Differentially Private Approach to CLIP Training
Alyssa Huang
Peihan Liu
Ryumei Nakada
Linjun Zhang
Wanrong Zhang
VLM
129
6
0
13 Jun 2023
Differentially private sliced inverse regression in the federated paradigm
Shuai He
Jiawei Zhang
Xin Chen
FedML
71
1
0
10 Jun 2023
Adaptive False Discovery Rate Control with Privacy Guarantee
Xintao Xia
Zhanrui Cai
31
1
0
31 May 2023
Discover and Cure: Concept-aware Mitigation of Spurious Correlation
Shirley Wu
Mert Yuksekgonul
Linjun Zhang
James Zou
149
62
0
01 May 2023
Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free
Syomantak Chaudhuri
T. Courtade
47
4
0
27 Apr 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
91
9
0
13 Apr 2023
Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation
Wei-Ning Chen
Danni Song
Ayfer Özgür
Peter Kairouz
FedML
71
28
0
04 Apr 2023
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
81
19
0
13 Mar 2023
Improved Differentially Private Regression via Gradient Boosting
Shuai Tang
Sergul Aydore
Michael Kearns
Saeyoung Rho
Aaron Roth
Yichen Wang
Yu Wang
Zhiwei Steven Wu
FedML
67
4
0
06 Mar 2023
Subset-Based Instance Optimality in Private Estimation
Travis Dick
Alex Kulesza
Ziteng Sun
A. Suresh
101
9
0
01 Mar 2023
1
2
3
Next