Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04495
Cited By
v1
v2
v3
v4
v5 (latest)
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
12 February 2019
T. Tony Cai
Yichen Wang
Linjun Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy"
50 / 111 papers shown
Title
Understanding Multimodal Contrastive Learning and Incorporating Unpaired Data
Ryumei Nakada
Halil Ibrahim Gulluk
Zhun Deng
Wenlong Ji
James Zou
Linjun Zhang
SSL
VLM
97
41
0
13 Feb 2023
Differentially Private Distributed Bayesian Linear Regression with MCMC
Barics Alparslan
S. Yıldırım
cS. .Ilker Birbil
FedML
45
1
0
31 Jan 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
68
9
0
30 Jan 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
73
21
0
28 Jan 2023
Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling
Shurong Lin
Mark Bun
Marco Gaboardi
E. D. Kolaczyk
Adam D. Smith
83
6
0
19 Jan 2023
Continual Mean Estimation Under User-Level Privacy
Anand George
Lekshmi Ramesh
A. V. Singh
Himanshu Tyagi
FedML
65
9
0
20 Dec 2022
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
110
8
0
24 Nov 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
90
24
0
01 Nov 2022
Differentially private multivariate medians
Kelly Ramsay
Aukosh Jagannath
Shojaéddin Chenouri
60
4
0
12 Oct 2022
Shuffled linear regression through graduated convex relaxation
Efe Onaran
Soledad Villar
49
4
0
30 Sep 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
106
33
0
30 Sep 2022
Majority Vote for Distributed Differentially Private Sign Selection
Weidong Liu
Jiyuan Tu
Xiaojun Mao
Xinyu Chen
FedML
61
1
0
08 Sep 2022
Easy Differentially Private Linear Regression
Kareem Amin
Matthew Joseph
Mónica Ribero
Sergei Vassilvitskii
FedML
57
17
0
15 Aug 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Jayshree Sarathy
Salil P. Vadhan
64
7
0
27 Jul 2022
(Nearly) Optimal Private Linear Regression via Adaptive Clipping
Prateeksha Varshney
Abhradeep Thakurta
Prateek Jain
76
8
0
11 Jul 2022
Data Augmentation MCMC for Bayesian Inference from Privatized Data
Nianqiao P. Ju
Jordan Awan
Ruobin Gong
Vinayak A. Rao
77
25
0
01 Jun 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
64
20
0
27 May 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
127
24
0
27 May 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
88
30
0
17 May 2022
Differentially Private Generalized Linear Models Revisited
R. Arora
Raef Bassily
Cristóbal Guzmán
Michael Menart
Enayat Ullah
FedML
83
18
0
06 May 2022
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
80
12
0
03 Mar 2022
Robust Estimation of Discrete Distributions under Local Differential Privacy
J. Chhor
Flore Sentenac
FedML
57
13
0
14 Feb 2022
On robustness and local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
70
26
0
03 Jan 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
71
25
0
29 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
71
47
0
07 Dec 2021
Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
FedML
80
62
0
25 Nov 2021
Differentially Private Nonparametric Regression Under a Growth Condition
Noah Golowich
53
6
0
24 Nov 2021
Distribution-Invariant Differential Privacy
Xuan Bi
Xiaotong Shen
44
14
0
08 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
95
40
0
08 Nov 2021
Universal Private Estimators
Wei Dong
K. Yi
81
20
0
04 Nov 2021
Private sampling: a noiseless approach for generating differentially private synthetic data
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
SyDa
68
14
0
30 Sep 2021
Privacy of synthetic data: a statistical framework
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
46
15
0
03 Sep 2021
High Dimensional Differentially Private Stochastic Optimization with Heavy-tailed Data
Lijie Hu
Shuo Ni
Hanshen Xiao
Di Wang
145
53
0
23 Jul 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
94
50
0
24 Jun 2021
Large Scale Private Learning via Low-rank Reparametrization
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
76
106
0
17 Jun 2021
Privately Learning Mixtures of Axis-Aligned Gaussians
Ishaq Aden-Ali
H. Ashtiani
Christopher Liaw
FedML
85
12
0
03 Jun 2021
High-Dimensional Differentially-Private EM Algorithm: Methods and Near-Optimal Statistical Guarantees
Zhe Zhang
Linjun Zhang
FedML
70
3
0
01 Apr 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
85
31
0
19 Mar 2021
A Central Limit Theorem for Differentially Private Query Answering
Jinshuo Dong
Weijie J. Su
Linjun Zhang
83
15
0
15 Mar 2021
Wide Network Learning with Differential Privacy
Huanyu Zhang
Ilya Mironov
Meisam Hejazinia
83
27
0
01 Mar 2021
Learning with User-Level Privacy
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
108
91
0
23 Feb 2021
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
90
77
0
18 Feb 2021
Differentially private depth functions and their associated medians
Kelly Ramsay
Shojaéddin Chenouri
FedML
48
8
0
07 Jan 2021
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
109
21
0
08 Nov 2020
Strongly universally consistent nonparametric regression and classification with privatised data
Thomas B. Berrett
László Gyorfi
Harro Walk
50
16
0
31 Oct 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
121
44
0
19 Oct 2020
Privacy Preserving Set-Based Estimation Using Partially Homomorphic Encryption
Amr Alanwar
Victor Gaßmann
Xingkang He
Hazem Said
H. Sandberg
Karl H. Johansson
Matthias Althoff
45
13
0
19 Oct 2020
Differentially Private Simple Linear Regression
Daniel Alabi
Audra McMillan
Jayshree Sarathy
Adam D. Smith
Salil P. Vadhan
53
55
0
10 Jul 2020
Improved Complexities for Stochastic Conditional Gradient Methods under Interpolation-like Conditions
Tesi Xiao
Krishnakumar Balasubramanian
Saeed Ghadimi
60
2
0
15 Jun 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
87
117
0
11 Jun 2020
Previous
1
2
3
Next