ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.05804
  4. Cited By
Heavy-tailed kernels reveal a finer cluster structure in t-SNE
  visualisations
v1v2 (latest)

Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations

15 February 2019
D. Kobak
G. Linderman
Stefan Steinerberger
Y. Kluger
Philipp Berens
ArXiv (abs)PDFHTML

Papers citing "Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations"

21 / 21 papers shown
Title
Equilibrium Distribution for t-Distributed Stochastic Neighbor Embedding with Generalized Kernels
Equilibrium Distribution for t-Distributed Stochastic Neighbor Embedding with Generalized Kernels
Yi Gu
31
0
0
30 May 2025
Random Forest Autoencoders for Guided Representation Learning
Random Forest Autoencoders for Guided Representation Learning
Adrien Aumon
Shuang Ni
Myriam Lizotte
Guy Wolf
Kevin R. Moon
Jake S. Rhodes
182
0
0
18 Feb 2025
Attraction-Repulsion Swarming: A Generalized Framework of t-SNE via
  Force Normalization and Tunable Interactions
Attraction-Repulsion Swarming: A Generalized Framework of t-SNE via Force Normalization and Tunable Interactions
Jingcheng Lu
Jeff Calder
60
0
0
15 Nov 2024
MIK: Modified Isolation Kernel for Biological Sequence Visualization,
  Classification, and Clustering
MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering
Sarwan Ali
Prakash Chourasia
Haris Mansoor
Bipin Koirala
Murray Patterson
411
0
0
21 Oct 2024
Convergence analysis of t-SNE as a gradient flow for point cloud on a
  manifold
Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold
Seonghyeon Jeong
Hau-tieng Wu
54
3
0
31 Jan 2024
Manifold learning: what, how, and why
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
88
59
0
07 Nov 2023
Inverse distance weighting attention
Inverse distance weighting attention
Calvin McCarter
61
1
0
28 Oct 2023
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets
  Using Unsupervised Learning
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets Using Unsupervised Learning
Julio J. Valdés
A. Tchagang
43
3
0
25 Sep 2023
Geometric Autoencoders -- What You See is What You Decode
Geometric Autoencoders -- What You See is What You Decode
Philipp Nazari
Sebastian Damrich
Fred Hamprecht
92
13
0
30 Jun 2023
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
Hugues van Assel
Titouan Vayer
Rémi Flamary
Nicolas Courty
87
9
0
23 May 2023
Preserving local densities in low-dimensional embeddings
Preserving local densities in low-dimensional embeddings
Jonas Fischer
R. Burkholz
Jilles Vreeken
49
3
0
31 Jan 2023
May the force be with you
May the force be with you
Yulan Zhang
Anna C. Gilbert
Stefan Steinerberger
30
0
0
13 Aug 2022
From $t$-SNE to UMAP with contrastive learning
From ttt-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
98
23
0
03 Jun 2022
A Probabilistic Graph Coupling View of Dimension Reduction
A Probabilistic Graph Coupling View of Dimension Reduction
Hugues van Assel
T. Espinasse
J. Chiquet
F. Picard
78
14
0
31 Jan 2022
Scalable semi-supervised dimensionality reduction with GPU-accelerated
  EmbedSOM
Scalable semi-supervised dimensionality reduction with GPU-accelerated EmbedSOM
Adam Šmelko
Sona Molnárová
Miroslav Kratochvíl
A. Koladiya
J. Musil
Martin Kruliš
J. Vondrášek
76
0
0
03 Jan 2022
Topological Indoor Mapping through WiFi Signals
Topological Indoor Mapping through WiFi Signals
Bastian Schaefermeier
Gerd Stumme
Tom Hanika
45
0
0
17 Jun 2021
t-SNE, Forceful Colorings and Mean Field Limits
t-SNE, Forceful Colorings and Mean Field Limits
Yulan Zhang
Stefan Steinerberger
68
12
0
25 Feb 2021
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
273
317
0
08 Dec 2020
Attraction-Repulsion Spectrum in Neighbor Embeddings
Attraction-Repulsion Spectrum in Neighbor Embeddings
Jan Niklas Böhm
Philipp Berens
D. Kobak
104
54
0
17 Jul 2020
Visualizing the Finer Cluster Structure of Large-Scale and
  High-Dimensional Data
Visualizing the Finer Cluster Structure of Large-Scale and High-Dimensional Data
Yuefeng Liang
A. Chaudhuri
Haoyu Wang
46
0
0
17 Jul 2020
Tree-SNE: Hierarchical Clustering and Visualization Using t-SNE
Tree-SNE: Hierarchical Clustering and Visualization Using t-SNE
Isaac Robinson
E. Pierce-Hoffman
29
5
0
13 Feb 2020
1