ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06278
  4. Cited By
ODIN: ODE-Informed Regression for Parameter and State Inference in
  Time-Continuous Dynamical Systems
v1v2v3 (latest)

ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems

17 February 2019
Philippe Wenk
G. Abbati
Michael A. Osborne
Bernhard Schölkopf
Andreas Krause
Stefan Bauer
ArXiv (abs)PDFHTML

Papers citing "ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems"

13 / 13 papers shown
Title
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient
  Kernels
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
55
0
0
09 Oct 2023
Capturing Actionable Dynamics with Structured Latent Ordinary
  Differential Equations
Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations
Paidamoyo Chapfuwa
Sherri Rose
Lawrence Carin
Edward Meeds
Ricardo Henao
CML
42
1
0
25 Feb 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Ziyi Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
95
15
0
24 Feb 2022
Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes
Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes
Alejandro Jose Ordóñez Conejo
Armin Lederer
Sandra Hirche
136
4
0
05 Nov 2021
Pick-and-Mix Information Operators for Probabilistic ODE Solvers
Pick-and-Mix Information Operators for Probabilistic ODE Solvers
Nathanael Bosch
Filip Tronarp
Philipp Hennig
71
10
0
20 Oct 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
76
16
0
21 Jun 2021
Linear-Time Probabilistic Solutions of Boundary Value Problems
Linear-Time Probabilistic Solutions of Boundary Value Problems
Nicholas Kramer
Philipp Hennig
45
1
0
14 Jun 2021
Neural graphical modelling in continuous-time: consistency guarantees
  and algorithms
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CMLAI4TS
91
46
0
06 May 2021
A Probabilistic State Space Model for Joint Inference from Differential
  Equations and Data
A Probabilistic State Space Model for Joint Inference from Differential Equations and Data
Jonathan Schmidt
Nicholas Kramer
Philipp Hennig
95
24
0
18 Mar 2021
Structured learning of rigid-body dynamics: A survey and unified view
  from a robotics perspective
Structured learning of rigid-body dynamics: A survey and unified view from a robotics perspective
A. R. Geist
Sebastian Trimpe
AI4CE
90
17
0
11 Dec 2020
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Steffen Ridderbusch
Christian Offen
Sina Ober-Blobaum
Paul Goulart
67
15
0
10 Nov 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
  Gaussian Process Regression with Derivatives
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
BDL
70
3
0
05 Mar 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free'
  Dynamical Systems
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
1