Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.06278
Cited By
v1
v2
v3 (latest)
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems
17 February 2019
Philippe Wenk
G. Abbati
Michael A. Osborne
Bernhard Schölkopf
Andreas Krause
Stefan Bauer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems"
13 / 13 papers shown
Title
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
55
0
0
09 Oct 2023
Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations
Paidamoyo Chapfuwa
Sherri Rose
Lawrence Carin
Edward Meeds
Ricardo Henao
CML
42
1
0
25 Feb 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Ziyi Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
95
15
0
24 Feb 2022
Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes
Alejandro Jose Ordóñez Conejo
Armin Lederer
Sandra Hirche
136
4
0
05 Nov 2021
Pick-and-Mix Information Operators for Probabilistic ODE Solvers
Nathanael Bosch
Filip Tronarp
Philipp Hennig
71
10
0
20 Oct 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
76
16
0
21 Jun 2021
Linear-Time Probabilistic Solutions of Boundary Value Problems
Nicholas Kramer
Philipp Hennig
45
1
0
14 Jun 2021
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
91
46
0
06 May 2021
A Probabilistic State Space Model for Joint Inference from Differential Equations and Data
Jonathan Schmidt
Nicholas Kramer
Philipp Hennig
95
24
0
18 Mar 2021
Structured learning of rigid-body dynamics: A survey and unified view from a robotics perspective
A. R. Geist
Sebastian Trimpe
AI4CE
90
17
0
11 Dec 2020
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Steffen Ridderbusch
Christian Offen
Sina Ober-Blobaum
Paul Goulart
67
15
0
10 Nov 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
BDL
70
3
0
05 Mar 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
1