ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.07698
  4. Cited By
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex
  Relaxation via Nonconvex Optimization

Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization

20 February 2019
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Yuling Yan
ArXivPDFHTML

Papers citing "Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization"

18 / 18 papers shown
Title
Optimal Transfer Learning for Missing Not-at-Random Matrix Completion
Akhil Jalan
Yassir Jedra
Arya Mazumdar
Soumendu Sundar Mukherjee
Purnamrita Sarkar
126
0
0
28 Feb 2025
On Speeding Up Language Model Evaluation
On Speeding Up Language Model Evaluation
Jin Peng Zhou
Christian K. Belardi
Ruihan Wu
Travis Zhang
Carla P. Gomes
Wen Sun
Kilian Q. Weinberger
53
1
0
08 Jul 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled
  Gradient Descent, Even with Overparameterization
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
38
4
0
10 Mar 2023
Approximate message passing from random initialization with applications
  to $\mathbb{Z}_{2}$ synchronization
Approximate message passing from random initialization with applications to Z2\mathbb{Z}_{2}Z2​ synchronization
Gen Li
Wei Fan
Yuting Wei
26
10
0
07 Feb 2023
Optimal Algorithms for Latent Bandits with Cluster Structure
Optimal Algorithms for Latent Bandits with Cluster Structure
S. Pal
A. Suggala
Karthikeyan Shanmugam
Prateek Jain
23
9
0
17 Jan 2023
A Generalized Latent Factor Model Approach to Mixed-data Matrix
  Completion with Entrywise Consistency
A Generalized Latent Factor Model Approach to Mixed-data Matrix Completion with Entrywise Consistency
Yunxiao Chen
Xiaoou Li
19
0
0
17 Nov 2022
Online Low Rank Matrix Completion
Online Low Rank Matrix Completion
Prateek Jain
S. Pal
40
9
0
08 Sep 2022
Optimal tuning-free convex relaxation for noisy matrix completion
Optimal tuning-free convex relaxation for noisy matrix completion
Yuepeng Yang
Cong Ma
28
8
0
12 Jul 2022
Robust Matrix Completion with Heavy-tailed Noise
Robust Matrix Completion with Heavy-tailed Noise
Bingyan Wang
Jianqing Fan
21
3
0
09 Jun 2022
Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Joshua Agterberg
Jeremias Sulam
16
0
0
08 Feb 2022
GNMR: A provable one-line algorithm for low rank matrix recovery
GNMR: A provable one-line algorithm for low rank matrix recovery
Pini Zilber
B. Nadler
46
13
0
24 Jun 2021
Matrix Completion with Model-free Weighting
Matrix Completion with Model-free Weighting
Jiayi Wang
R. K. Wong
Xiaojun Mao
Kwun Chuen Gary Chan
29
5
0
09 Jun 2021
Statistical Inference for Noisy Incomplete Binary Matrix
Statistical Inference for Noisy Incomplete Binary Matrix
Yunxiao Chen
Chengcheng Li
Ouyang Jing
Gongjun Xu
17
7
0
04 May 2021
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
32
18
0
10 Jan 2021
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled
  Gradient Descent
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
19
113
0
18 May 2020
A Selective Overview of Deep Learning
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
25
136
0
10 Apr 2019
The Projected Power Method: An Efficient Algorithm for Joint Alignment
  from Pairwise Differences
The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences
Yuxin Chen
Emmanuel Candes
32
92
0
19 Sep 2016
1