Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1902.08102
Cited By
Statistics and Samples in Distributional Reinforcement Learning
21 February 2019
Mark Rowland
Robert Dadashi
Saurabh Kumar
Rémi Munos
Marc G. Bellemare
Will Dabney
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Statistics and Samples in Distributional Reinforcement Learning"
50 / 55 papers shown
Title
Risk-Sensitive Q-Learning in Continuous Time with Application to Dynamic Portfolio Selection
Chuhan Xie
172
0
0
02 Dec 2025
ES-C51: Expected Sarsa Based C51 Distributional Reinforcement Learning Algorithm
Rijul Tandon
Peter Vamplew
Cameron Foale
72
0
0
16 Oct 2025
RM-RL: Role-Model Reinforcement Learning for Precise Robot Manipulation
Xiangyu Chen
Chuhao Zhou
Yuxi Liu
Jianfei Yang
OffRL
132
0
0
16 Oct 2025
Phase Diagram of Dropout for Two-Layer Neural Networks in the Mean-Field Regime
Lénaic Chizat
Pierre Marion
Yerkin Yesbay
94
0
0
08 Oct 2025
RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization
Kai Fukazawa
Kunal Mundada
Iman Soltani
OffRL
142
0
0
03 Oct 2025
Efficient Risk-sensitive Planning via Entropic Risk Measures
Alexandre Marthe
Samuel Bounan
Aurélien Garivier
Claire Vernade
326
2
0
27 Feb 2025
Tackling Uncertainties in Multi-Agent Reinforcement Learning through Integration of Agent Termination Dynamics
Adaptive Agents and Multi-Agent Systems (AAMAS), 2025
S. Hazra
P. Dasgupta
Soumyajit Dey
278
0
0
21 Jan 2025
Bootstrapping Expectiles in Reinforcement Learning
Pierre Clavier
Emmanuel Rachelson
E. L. Pennec
Matthieu Geist
OffRL
251
0
0
06 Jun 2024
Improving Actor-Critic Training with Steerable Action-Value Approximation Errors
Bahareh Tasdighi
Nicklas Werge
Yi-Shan Wu
M. Kandemir
152
0
0
06 Jun 2024
A Case for Validation Buffer in Pessimistic Actor-Critic
Michal Nauman
M. Ostaszewski
Marek Cygan
218
0
0
01 Mar 2024
Distributional Bellman Operators over Mean Embeddings
International Conference on Machine Learning (ICML), 2023
Wenliang Kevin Li
Grégoire Delétang
Matthew Aitchison
Marcus Hutter
Anian Ruoss
Arthur Gretton
Mark Rowland
OffRL
205
4
0
09 Dec 2023
An introduction to reinforcement learning for neuroscience
Neurons, Behavior, Data analysis, and Theory (NBDT), 2023
Kristopher T. Jensen
OOD
OffRL
AI4CE
103
8
0
13 Nov 2023
RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization
Neural Information Processing Systems (NeurIPS), 2023
Siqi Shen
Chennan Ma
Chao Li
Weiquan Liu
Yongquan Fu
Songzhu Mei
Xinwang Liu
Cheng-Yu Wang
180
19
0
03 Nov 2023
Beyond Average Return in Markov Decision Processes
Neural Information Processing Systems (NeurIPS), 2023
Alexandre Marthe
Aurélien Garivier
Claire Vernade
210
10
0
31 Oct 2023
Distributional Soft Actor-Critic with Three Refinements
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Jingliang Duan
Wenxuan Wang
Liming Xiao
Jiaxin Gao
Shengbo Eben Li
Chang Liu
Ya-Qin Zhang
Bo Cheng
Keqiang Li
OODD
OffRL
237
4
0
09 Oct 2023
DRL-ORA: Distributional Reinforcement Learning with Online Risk Adaption
Yupeng Wu
Wenyun Li
Wenjie Huang
Chin Pang Ho
OffRL
232
0
0
08 Oct 2023
Learning Risk-Aware Quadrupedal Locomotion using Distributional Reinforcement Learning
IEEE International Conference on Robotics and Automation (ICRA), 2023
Lukas Schneider
Jonas Frey
Takahiro Miki
Marco Hutter
256
16
0
25 Sep 2023
Value-Distributional Model-Based Reinforcement Learning
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
OffRL
186
7
0
12 Aug 2023
Variance Control for Distributional Reinforcement Learning
International Conference on Machine Learning (ICML), 2023
Qi Kuang
Zhoufan Zhu
Liwen Zhang
Fan Zhou
OffRL
283
4
0
30 Jul 2023
Cramer Type Distances for Learning Gaussian Mixture Models by Gradient Descent
Ruichong Zhang
133
1
0
13 Jul 2023
Distributional Model Equivalence for Risk-Sensitive Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2023
Tyler Kastner
Murat A. Erdogdu
Amir-massoud Farahmand
OffRL
244
7
0
04 Jul 2023
Is Risk-Sensitive Reinforcement Learning Properly Resolved?
Ruiwen Zhou
Minghuan Liu
Kan Ren
Xufang Luo
Weinan Zhang
Dongsheng Li
211
3
0
02 Jul 2023
Diverse Projection Ensembles for Distributional Reinforcement Learning
International Conference on Learning Representations (ICLR), 2023
Moritz A. Zanger
Wendelin Bohmer
M. Spaan
207
7
0
12 Jun 2023
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
Journal of machine learning research (JMLR), 2023
Wei-Fang Sun
Cheng-Kuang Lee
Simon See
Chun-Yi Lee
OffRL
192
2
0
04 Jun 2023
The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation
International Conference on Machine Learning (ICML), 2023
Mark Rowland
Yunhao Tang
Clare Lyle
Rémi Munos
Marc G. Bellemare
Will Dabney
179
13
0
28 May 2023
Distributional Reinforcement Learning with Dual Expectile-Quantile Regression
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Sami Jullien
Romain Deffayet
J. Renders
Paul T. Groth
Maarten de Rijke
OOD
297
1
0
26 May 2023
Learning Diverse Risk Preferences in Population-based Self-play
AAAI Conference on Artificial Intelligence (AAAI), 2023
Y. Jiang
Qihan Liu
Xiaoteng Ma
Chenghao Li
Yiqin Yang
Jun Yang
Bin Liang
Qianchuan Zhao
360
8
0
19 May 2023
Constrained Reinforcement Learning using Distributional Representation for Trustworthy Quadrotor UAV Tracking Control
IEEE Transactions on Automation Science and Engineering (IEEE TASE), 2023
Yanran Wang
David E. Boyle
294
12
0
22 Feb 2023
Distributional GFlowNets with Quantile Flows
Dinghuai Zhang
L. Pan
Ricky T. Q. Chen
Aaron Courville
Yoshua Bengio
253
31
0
11 Feb 2023
An Analysis of Quantile Temporal-Difference Learning
Journal of machine learning research (JMLR), 2023
Mark Rowland
Rémi Munos
M. G. Azar
Yunhao Tang
Georg Ostrovski
Anna Harutyunyan
K. Tuyls
Marc G. Bellemare
Will Dabney
320
33
0
11 Jan 2023
Distributional Reward Estimation for Effective Multi-Agent Deep Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2022
Jifeng Hu
Yanchao Sun
Hechang Chen
Sili Huang
Haiyin Piao
Yi-Ju Chang
Lichao Sun
189
7
0
14 Oct 2022
Distributional Actor-Critic Ensemble for Uncertainty-Aware Continuous Control
IEEE International Joint Conference on Neural Network (IJCNN), 2022
T. Kanazawa
Haiyan Wang
Chetan Gupta
UQCV
264
7
0
27 Jul 2022
The Nature of Temporal Difference Errors in Multi-step Distributional Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2022
Yunhao Tang
Mark Rowland
Rémi Munos
Bernardo Avila-Pires
Will Dabney
Marc G. Bellemare
OffRL
137
12
0
15 Jul 2022
A Simulation Environment and Reinforcement Learning Method for Waste Reduction
Sami Jullien
Mozhdeh Ariannezhad
Paul T. Groth
Maarten de Rijke
OOD
OffRL
194
4
0
30 May 2022
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
International Conference on Machine Learning (ICML), 2022
Harley Wiltzer
David Meger
Marc G. Bellemare
166
15
0
24 May 2022
Interpretable Stochastic Model Predictive Control using Distributional Reinforced Estimation for Quadrotor Tracking Systems
IEEE Conference on Decision and Control (CDC), 2022
Yanran Wang
James O’Keeffe
Qiuchen Qian
David E. Boyle
103
4
0
14 May 2022
Distributional Reinforcement Learning by Sinkhorn Divergence
Neural Information Processing Systems (NeurIPS), 2022
Ke Sun
Yingnan Zhao
Wulong Liu
Bei Jiang
Linglong Kong
397
0
0
01 Feb 2022
Reinforcement Learning with Heterogeneous Data: Estimation and Inference
Elynn Y. Chen
Rui Song
Michael I. Jordan
OffRL
221
10
0
31 Jan 2022
Robustness and risk management via distributional dynamic programming
Mastane Achab
Gergely Neu
84
7
0
28 Dec 2021
Deep Reinforcement Learning Policies Learn Shared Adversarial Features Across MDPs
Ezgi Korkmaz
88
27
0
16 Dec 2021
Offline Reinforcement Learning with Value-based Episodic Memory
Xiaoteng Ma
Yiqin Yang
Haotian Hu
Qihan Liu
Jun Yang
Chongjie Zhang
Qianchuan Zhao
Bin Liang
OffRL
198
46
0
19 Oct 2021
The Benefits of Being Categorical Distributional: Uncertainty-aware Regularized Exploration in Reinforcement Learning
Ke Sun
Yingnan Zhao
Enze Shi
Yafei Wang
Xiaodong Yan
Bei Jiang
Linglong Kong
OOD
OffRL
UQCV
227
2
0
07 Oct 2021
Conservative Offline Distributional Reinforcement Learning
Yecheng Jason Ma
Dinesh Jayaraman
Osbert Bastani
OffRL
200
95
0
12 Jul 2021
Distributional Reinforcement Learning with Unconstrained Monotonic Neural Networks
Thibaut Théate
Antoine Wehenkel
Adrien Bolland
Gilles Louppe
D. Ernst
153
8
0
06 Jun 2021
GMAC: A Distributional Perspective on Actor-Critic Framework
International Conference on Machine Learning (ICML), 2021
D. W. Nam
Younghoon Kim
Chan Y. Park
185
21
0
24 May 2021
Universal Off-Policy Evaluation
Neural Information Processing Systems (NeurIPS), 2021
Yash Chandak
S. Niekum
Bruno C. da Silva
Erik Learned-Miller
Emma Brunskill
Philip S. Thomas
OffRL
ELM
244
57
0
26 Apr 2021
Bayesian Distributional Policy Gradients
AAAI Conference on Artificial Intelligence (AAAI), 2021
Luchen Li
A. Faisal
BDL
OffRL
166
11
0
20 Mar 2021
SENTINEL: Taming Uncertainty with Ensemble-based Distributional Reinforcement Learning
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Hannes Eriksson
D. Basu
Mina Alibeigi
Christos Dimitrakakis
OffRL
147
19
0
22 Feb 2021
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
International Conference on Machine Learning (ICML), 2021
Wei-Fang Sun
Cheng-Kuang Lee
Chun-Yi Lee
OffRL
170
52
0
16 Feb 2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2021
Theodore H. Moskovitz
Jack Parker-Holder
Aldo Pacchiano
Michael Arbel
Sai Li
291
68
0
07 Feb 2021
1
2
Next