ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.10416
  4. Cited By
Equi-normalization of Neural Networks

Equi-normalization of Neural Networks

International Conference on Learning Representations (ICLR), 2019
27 February 2019
Pierre Stock
Benjamin Graham
Rémi Gribonval
Edouard Grave
    ODL
ArXiv (abs)PDFHTML

Papers citing "Equi-normalization of Neural Networks"

12 / 12 papers shown
Non-Vacuous Generalization Bounds: Can Rescaling Invariances Help?
Non-Vacuous Generalization Bounds: Can Rescaling Invariances Help?
Damien Rouchouse
Antoine Gonon
Rémi Gribonval
Benjamin Guedj
124
0
0
30 Sep 2025
Symmetry in Neural Network Parameter Spaces
Symmetry in Neural Network Parameter Spaces
Bo Zhao
Robin Walters
Rose Yu
366
8
0
16 Jun 2025
Transformative or Conservative? Conservation laws for ResNets and Transformers
Transformative or Conservative? Conservation laws for ResNets and Transformers
Sibylle Marcotte
Rémi Gribonval
Gabriel Peyré
244
3
0
06 Jun 2025
Improving Learning to Optimize Using Parameter Symmetries
Improving Learning to Optimize Using Parameter Symmetries
Guy Zamir
Aryan Dokania
B. Zhao
Rose Yu
308
2
0
21 Apr 2025
Scale Equivariant Graph Metanetworks
Scale Equivariant Graph Metanetworks
Ioannis Kalogeropoulos
Giorgos Bouritsas
Yannis Panagakis
388
15
0
15 Jun 2024
Efficient Algorithms for Regularized Nonnegative Scale-invariant Low-rank Approximation Models
Efficient Algorithms for Regularized Nonnegative Scale-invariant Low-rank Approximation Models
Jeremy E. Cohen
Valentin Leplat
484
5
0
27 Mar 2024
PIPE : Parallelized Inference Through Post-Training Quantization
  Ensembling of Residual Expansions
PIPE : Parallelized Inference Through Post-Training Quantization Ensembling of Residual Expansions
Edouard Yvinec
Arnaud Dapogny
Kévin Bailly
MQ
289
0
0
27 Nov 2023
Exploring the Complexity of Deep Neural Networks through Functional
  Equivalence
Exploring the Complexity of Deep Neural Networks through Functional EquivalenceInternational Conference on Machine Learning (ICML), 2023
Guohao Shen
355
6
0
19 May 2023
PathProx: A Proximal Gradient Algorithm for Weight Decay Regularized
  Deep Neural Networks
PathProx: A Proximal Gradient Algorithm for Weight Decay Regularized Deep Neural Networks
Liu Yang
Jifan Zhang
Joseph Shenouda
Dimitris Papailiopoulos
Kangwook Lee
Robert D. Nowak
351
2
0
06 Oct 2022
REx: Data-Free Residual Quantization Error Expansion
REx: Data-Free Residual Quantization Error ExpansionNeural Information Processing Systems (NeurIPS), 2022
Edouard Yvinec
Arnaud Dapgony
Matthieu Cord
Kévin Bailly
MQ
334
9
0
28 Mar 2022
An Embedding of ReLU Networks and an Analysis of their Identifiability
An Embedding of ReLU Networks and an Analysis of their IdentifiabilityConstructive approximation (Constr. Approx.), 2021
Pierre Stock
Rémi Gribonval
273
24
0
20 Jul 2021
Data-Free Quantization Through Weight Equalization and Bias Correction
Data-Free Quantization Through Weight Equalization and Bias CorrectionIEEE International Conference on Computer Vision (ICCV), 2019
Markus Nagel
M. V. Baalen
Tijmen Blankevoort
Max Welling
MQ
367
589
0
11 Jun 2019
1