Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.01521
Cited By
Efficient Winograd or Cook-Toom Convolution Kernel Implementation on Widely Used Mobile CPUs
4 March 2019
Partha P. Maji
Andrew Mundy
Ganesh S. Dasika
Jesse G. Beu
Matthew Mattina
Robert D. Mullins
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Winograd or Cook-Toom Convolution Kernel Implementation on Widely Used Mobile CPUs"
12 / 12 papers shown
Title
YFlows: Systematic Dataflow Exploration and Code Generation for Efficient Neural Network Inference using SIMD Architectures on CPUs
Cyrus Zhou
Zack Hassman
Ruize Xu
Dhirpal Shah
Vaughn Richard
Yanjing Li
32
1
0
01 Oct 2023
On Efficient Training of Large-Scale Deep Learning Models: A Literature Review
Li Shen
Yan Sun
Zhiyuan Yu
Liang Ding
Xinmei Tian
Dacheng Tao
VLM
28
40
0
07 Apr 2023
Accelerating CNN inference on long vector architectures via co-design
Sonia Rani Gupta
Nikela Papadopoulou
Miquel Pericàs
3DV
11
4
0
22 Dec 2022
Going Further With Winograd Convolutions: Tap-Wise Quantization for Efficient Inference on 4x4 Tile
Renzo Andri
Beatrice Bussolino
A. Cipolletta
Lukas Cavigelli
Zhe Wang
MQ
26
13
0
26 Sep 2022
Winograd Convolution for Deep Neural Networks: Efficient Point Selection
Syed Asad Alam
Andrew Anderson
B. Barabasz
David Gregg
56
25
0
25 Jan 2022
Fast Convolution based on Winograd Minimum Filtering: Introduction and Development
Gan Tong
Libo Huang
13
2
0
01 Nov 2021
Automated Design Space Exploration for optimised Deployment of DNN on Arm Cortex-A CPUs
Miguel de Prado
Andrew Mundy
Rabia Saeed
Maurizo Denna
Nuria Pazos
Luca Benini
16
11
0
09 Jun 2020
Quantaized Winograd/Toom-Cook Convolution for DNNs: Beyond Canonical Polynomials Base
B. Barabasz
MQ
10
5
0
23 Apr 2020
LANCE: Efficient Low-Precision Quantized Winograd Convolution for Neural Networks Based on Graphics Processing Units
Guangli Li
Lei Liu
Xueying Wang
Xiu Ma
Xiaobing Feng
MQ
11
18
0
19 Mar 2020
Searching for Winograd-aware Quantized Networks
Javier Fernandez-Marques
P. Whatmough
Andrew Mundy
Matthew Mattina
MQ
9
40
0
25 Feb 2020
DWM: A Decomposable Winograd Method for Convolution Acceleration
Di Huang
Xishan Zhang
Rui Zhang
Tian Zhi
Deyuan He
...
Qi Guo
Zidong Du
Shaoli Liu
Tianshi Chen
Yunji Chen
8
26
0
03 Feb 2020
A model-driven approach for a new generation of adaptive libraries
Marco Cianfriglia
Damiano Perri
C. Nugteren
Anton Lokhmotov
G. Fursin
14
14
0
19 Jun 2018
1