ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.01608
  4. Cited By
Theoretical guarantees for sampling and inference in generative models
  with latent diffusions
v1v2 (latest)

Theoretical guarantees for sampling and inference in generative models with latent diffusions

Annual Conference Computational Learning Theory (COLT), 2019
5 March 2019
Belinda Tzen
Maxim Raginsky
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Theoretical guarantees for sampling and inference in generative models with latent diffusions"

50 / 79 papers shown
Title
A Closed-Form Framework for Schrödinger Bridges Between Arbitrary Densities
A Closed-Form Framework for Schrödinger Bridges Between Arbitrary Densities
Hanwen Huang
DiffM
144
0
0
11 Nov 2025
Rectified Noise: A Generative Model Using Positive-incentive Noise
Rectified Noise: A Generative Model Using Positive-incentive Noise
Zhenyu Gu
Yanchen Xu
Sida Huang
Yubin Guo
Hongyuan Zhang
189
3
0
11 Nov 2025
HardFlow: Hard-Constrained Sampling for Flow-Matching Models via Trajectory Optimization
HardFlow: Hard-Constrained Sampling for Flow-Matching Models via Trajectory Optimization
Zeyang Li
Kaveh Alim
Navid Azizan
264
0
0
11 Nov 2025
Functional Adjoint Sampler: Scalable Sampling on Infinite Dimensional Spaces
Functional Adjoint Sampler: Scalable Sampling on Infinite Dimensional Spaces
Byoungwoo Park
Juho Lee
Guan-Horng Liu
124
0
0
09 Nov 2025
Balanced conic rectified flow
Balanced conic rectified flow
Kim Shin Seong
Mingi Kwon
Jaeseok Jeong
Youngjung Uh
80
2
0
29 Oct 2025
Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference
Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference
Denis Blessing
Julius Berner
Lorenz Richter
Carles Domingo-Enrich
Yuanqi Du
Arash Vahdat
Gerhard Neumann
104
5
0
17 Aug 2025
Path Integral Optimiser: Global Optimisation via Neural Schrödinger-Föllmer Diffusion
Path Integral Optimiser: Global Optimisation via Neural Schrödinger-Föllmer Diffusion
Max McGuinness
Eirik Fladmark
Francisco Vargas
107
0
0
07 Jun 2025
Scientific machine learning in Hydrology: a unified perspective
Scientific machine learning in Hydrology: a unified perspectiveEarth Science Informatics (ESI), 2025
Adoubi Vincent De Paul Adombi
AI4CE
82
0
0
24 May 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
468
30
0
16 Apr 2025
Bezier Distillation
Bezier Distillation
Ling Feng
SK Yang
127
0
0
20 Mar 2025
Neural Guided Diffusion Bridges
Neural Guided Diffusion Bridges
Gefan Yang
Frank van der Meulen
Stefan Sommer
DiffM
270
1
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Chinmay Pani
Yingzhen Li
584
2
0
11 Feb 2025
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving ScenesIEEE Robotics and Automation Letters (RA-L), 2024
Tim Broedermann
Daniel Gehrig
Yuqian Fu
Luc Van Gool
285
26
0
28 Jan 2025
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
408
11
0
25 Oct 2024
How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework
How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral FrameworkInternational Conference on Learning Representations (ICLR), 2024
Yinuo Ren
Haoxuan Chen
Grant M. Rotskoff
Lexing Ying
251
25
0
04 Oct 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion
  Posterior Sampling
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
296
0
0
07 Aug 2024
Log-Concave Coupling for Sampling Neural Net Posteriors
Log-Concave Coupling for Sampling Neural Net Posteriors
Curtis McDonald
Andrew R. Barron
106
1
0
26 Jul 2024
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling
  with Denoising Diffusion Variational Inference
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
Jian Xu
Delu Zeng
John Paisley
DiffM
225
11
0
24 Jul 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
465
8
0
31 May 2024
Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity
Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time ComplexityNeural Information Processing Systems (NeurIPS), 2024
Haoxuan Chen
Yinuo Ren
Lexing Ying
Grant M. Rotskoff
259
36
0
24 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing FlowsNeural Information Processing Systems (NeurIPS), 2024
A. Cabezas
Louis Sharrock
Christopher Nemeth
205
7
0
23 May 2024
Control, Transport and Sampling: Towards Better Loss Design
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
192
0
0
22 May 2024
Directly Denoising Diffusion Models
Directly Denoising Diffusion Models
Dan Zhang
Jingjing Wang
Feng Luo
DiffM
286
2
0
22 May 2024
One-step data-driven generative model via Schrödinger Bridge
One-step data-driven generative model via Schrödinger Bridge
Hanwen Huang
DiffM
193
4
0
21 May 2024
Mixing Artificial and Natural Intelligence: From Statistical Mechanics
  to AI and Back to Turbulence
Mixing Artificial and Natural Intelligence: From Statistical Mechanics to AI and Back to Turbulence
Michael Chertkov
AI4CE
290
4
0
26 Mar 2024
Probabilistic Forecasting with Stochastic Interpolants and Föllmer
  Processes
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen
Mark Goldstein
Mengjian Hua
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
AI4TS
312
35
0
20 Mar 2024
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Jhanvi Garg
Xianyang Zhang
Quan Zhou
DiffMOT
265
5
0
04 Mar 2024
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
  Control
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control
Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
N. Diamant
Alex Tseng
Tommaso Biancalani
Sergey Levine
247
80
0
23 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
272
21
0
16 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
228
85
0
09 Feb 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
355
19
0
08 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
590
41
0
07 Feb 2024
Towards a Systems Theory of Algorithms
Towards a Systems Theory of AlgorithmsIEEE Control Systems Letters (L-CSS), 2024
Florian Dorfler
Zhiyu He
Giuseppe Belgioioso
S. Bolognani
John Lygeros
Michael Muehlebach
AI4CE
229
24
0
25 Jan 2024
Neural Stochastic Differential Equations with Change Points: A
  Generative Adversarial Approach
Neural Stochastic Differential Equations with Change Points: A Generative Adversarial Approach
Zhongchang Sun
Yousef El-Laham
Svitlana Vyetrenko
AI4TS
211
2
0
20 Dec 2023
Noise in the reverse process improves the approximation capabilities of
  diffusion models
Noise in the reverse process improves the approximation capabilities of diffusion models
Karthik Elamvazhuthi
Samet Oymak
Fabio Pasqualetti
DiffM
170
0
0
13 Dec 2023
Efficient Dataset Distillation via Minimax Diffusion
Efficient Dataset Distillation via Minimax DiffusionComputer Vision and Pattern Recognition (CVPR), 2023
Jianyang Gu
Saeed Vahidian
Vyacheslav Kungurtsev
Haonan Wang
Wei Jiang
Yang You
Yiran Chen
DD
256
60
0
27 Nov 2023
Neural Structure Learning with Stochastic Differential Equations
Neural Structure Learning with Stochastic Differential EquationsInternational Conference on Learning Representations (ICLR), 2023
Benjie Wang
Joel Jennings
Wenbo Gong
CMLAI4TS
212
9
0
06 Nov 2023
Convergence of flow-based generative models via proximal gradient
  descent in Wasserstein space
Convergence of flow-based generative models via proximal gradient descent in Wasserstein spaceIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Xiuyuan Cheng
Jianfeng Lu
Yixin Tan
Yao Xie
522
29
0
26 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimizationInternational Conference on Learning Representations (ICLR), 2023
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
347
59
0
04 Oct 2023
Diffusion Schrödinger Bridges for Bayesian Computation
Diffusion Schrödinger Bridges for Bayesian Computation
J. Heng
Valentin De Bortoli
Arnaud Doucet
DiffM
152
3
0
27 Aug 2023
Reverse Diffusion Monte Carlo
Reverse Diffusion Monte CarloInternational Conference on Learning Representations (ICLR), 2023
Xunpeng Huang
Hanze Dong
Yi Hao
Yi-An Ma
Tong Zhang
DiffM
393
35
0
05 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusionsInternational Conference on Learning Representations (ICLR), 2023
Lorenz Richter
Julius Berner
DiffM
350
88
0
03 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Transport meets Variational Inference: Controlled Monte Carlo DiffusionsInternational Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffMOT
757
12
0
03 Jul 2023
A Constructive Approach to Function Realization by Neural Stochastic
  Differential Equations
A Constructive Approach to Function Realization by Neural Stochastic Differential EquationsIEEE Conference on Decision and Control (CDC), 2023
Tanya Veeravalli
Maxim Raginsky
128
0
0
01 Jul 2023
Latent SDEs on Homogeneous Spaces
Latent SDEs on Homogeneous SpacesNeural Information Processing Systems (NeurIPS), 2023
Sebastian Zeng
Florian Graf
Roland Kwitt
BDL
292
12
0
28 Jun 2023
On a Class of Gibbs Sampling over Networks
On a Class of Gibbs Sampling over NetworksAnnual Conference Computational Learning Theory (COLT), 2023
Bo Yuan
JiaoJiao Fan
Jiaming Liang
Andre Wibisono
Yongxin Chen
173
8
0
23 Jun 2023
On the Design Fundamentals of Diffusion Models: A Survey
On the Design Fundamentals of Diffusion Models: A SurveyPattern Recognition (Pattern Recogn.), 2023
Ziyi Chang
George Alex Koulieris
Hyung Jin Chang
Hubert P. H. Shum
DiffM
545
78
0
07 Jun 2023
To smooth a cloud or to pin it down: Guarantees and Insights on Score
  Matching in Denoising Diffusion Models
To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models
Francisco Vargas
Teodora Reu
A. Kerekes
Michael M Bronstein
DiffM
290
1
0
16 May 2023
Directed Chain Generative Adversarial Networks
Directed Chain Generative Adversarial NetworksInternational Conference on Machine Learning (ICML), 2023
Ming Min
Ruimeng Hu
Tomoyuki Ichiba
AI4TSAI4CEGAN
209
1
0
25 Apr 2023
Denoising Diffusion Samplers
Denoising Diffusion SamplersInternational Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
279
119
0
27 Feb 2023
12
Next