ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.03571
  4. Cited By
Rates of Convergence for Sparse Variational Gaussian Process Regression

Rates of Convergence for Sparse Variational Gaussian Process Regression

8 March 2019
David R. Burt
C. Rasmussen
Mark van der Wilk
ArXivPDFHTML

Papers citing "Rates of Convergence for Sparse Variational Gaussian Process Regression"

28 / 28 papers shown
Title
Verification and Validation for Trustworthy Scientific Machine Learning
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
56
0
0
21 Feb 2025
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
19
3
0
12 Sep 2024
Resource-Efficient Cooperative Online Scalar Field Mapping via
  Distributed Sparse Gaussian Process Regression
Resource-Efficient Cooperative Online Scalar Field Mapping via Distributed Sparse Gaussian Process Regression
Tianyi Ding
Ronghao Zheng
Senlin Zhang
Meiqin Liu
23
1
0
19 Sep 2023
Uniform approximation of common Gaussian process kernels using
  equispaced Fourier grids
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
8
7
0
18 May 2023
Representing Additive Gaussian Processes by Sparse Matrices
Representing Additive Gaussian Processes by Sparse Matrices
Lu Zou
Haoyuan Chen
Liang Ding
15
0
0
29 Apr 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
16
5
0
11 Apr 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
25
24
0
24 Jan 2023
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
42
19
0
23 Oct 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
56
7
0
14 Oct 2022
Sharp Analysis of Sketch-and-Project Methods via a Connection to
  Randomized Singular Value Decomposition
Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
Michal Derezinski
E. Rebrova
22
16
0
20 Aug 2022
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
16
8
0
28 Jun 2022
High-dimensional additive Gaussian processes under monotonicity
  constraints
High-dimensional additive Gaussian processes under monotonicity constraints
A. F. López-Lopera
F. Bachoc
O. Roustant
16
9
0
17 May 2022
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
15
3
0
19 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
9
0
08 Nov 2021
Distributed Gaussian Process Mapping for Robot Teams with Time-varying
  Communication
Distributed Gaussian Process Mapping for Robot Teams with Time-varying Communication
James Di
Ehsan Zobeidi
Alec Koppel
Nikolay A. Atanasov
18
2
0
12 Oct 2021
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
41
17
0
22 Sep 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard E. Turner
19
8
0
18 Jun 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by
  Adaptive Discretization
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
31
5
0
16 Jun 2021
Lightweight Distributed Gaussian Process Regression for Online Machine
  Learning
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
9
4
0
11 May 2021
Precise expressions for random projections: Low-rank approximation and
  randomized Newton
Precise expressions for random projections: Low-rank approximation and randomized Newton
Michal Derezinski
Feynman T. Liang
Zhenyu A. Liao
Michael W. Mahoney
13
23
0
18 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
8
76
0
07 May 2020
Practical Hilbert space approximate Bayesian Gaussian processes for
  probabilistic programming
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Burkner
Michael R. Andersen
Arno Solin
Aki Vehtari
11
68
0
23 Apr 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
35
94
0
02 Mar 2020
Improved guarantees and a multiple-descent curve for Column Subset
  Selection and the Nyström method
Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nyström method
Michal Derezinski
Rajiv Khanna
Michael W. Mahoney
8
10
0
21 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
6
24
0
15 Jan 2020
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
16
14
0
05 Nov 2019
mfEGRA: Multifidelity Efficient Global Reliability Analysis through
  Active Learning for Failure Boundary Location
mfEGRA: Multifidelity Efficient Global Reliability Analysis through Active Learning for Failure Boundary Location
A. Chaudhuri
A. Marques
Karen E. Willcox
14
24
0
06 Oct 2019
Variational Inference of Joint Models using Multivariate Gaussian
  Convolution Processes
Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
Xubo Yue
Raed Al Kontar
19
16
0
09 Mar 2019
1