Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05499
Cited By
DeepOBS: A Deep Learning Optimizer Benchmark Suite
13 March 2019
Frank Schneider
Lukas Balles
Philipp Hennig
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DeepOBS: A Deep Learning Optimizer Benchmark Suite"
10 / 10 papers shown
Title
Training neural networks faster with minimal tuning using pre-computed lists of hyperparameters for NAdamW
Sourabh Medapati
Priya Kasimbeg
Shankar Krishnan
Naman Agarwal
George E. Dahl
57
0
0
06 Mar 2025
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
135
0
0
22 Jan 2025
Towards Better Open-Ended Text Generation: A Multicriteria Evaluation Framework
Esteban Garces Arias
Hannah Blocher
Julian Rodemann
Meimingwei Li
Christian Heumann
Matthias Aßenmacher
25
1
0
24 Oct 2024
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
43
0
0
18 Oct 2024
Deconstructing What Makes a Good Optimizer for Language Models
Rosie Zhao
Depen Morwani
David Brandfonbrener
Nikhil Vyas
Sham Kakade
42
17
0
10 Jul 2024
HesScale: Scalable Computation of Hessian Diagonals
Mohamed Elsayed
A. R. Mahmood
14
7
0
20 Oct 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
22
14
0
01 Nov 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
D. Duvenaud
Philipp Hennig
ODL
30
6
0
09 Nov 2020
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
36
63
0
14 Feb 2018
1