ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.10464
  4. Cited By
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values

Explaining individual predictions when features are dependent: More accurate approximations to Shapley values

25 March 2019
K. Aas
Martin Jullum
Anders Løland
    FAtt
    TDI
ArXivPDFHTML

Papers citing "Explaining individual predictions when features are dependent: More accurate approximations to Shapley values"

34 / 84 papers shown
Title
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
32
17
0
26 Nov 2021
Decorrelated Variable Importance
Decorrelated Variable Importance
I. Verdinelli
Larry A. Wasserman
FAtt
19
18
0
21 Nov 2021
Causal versus Marginal Shapley Values for Robotic Lever Manipulation
  Controlled using Deep Reinforcement Learning
Causal versus Marginal Shapley Values for Robotic Lever Manipulation Controlled using Deep Reinforcement Learning
Sindre Benjamin Remman
Inga Strümke
A. Lekkas
CML
17
7
0
04 Nov 2021
Counterfactual Shapley Additive Explanations
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
28
49
0
27 Oct 2021
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
26
16
0
18 Oct 2021
Out-of-Distribution Detection for Medical Applications: Guidelines for
  Practical Evaluation
Out-of-Distribution Detection for Medical Applications: Guidelines for Practical Evaluation
Karina Zadorozhny
P. Thoral
Paul Elbers
Giovanni Cina
OODD
OOD
32
12
0
30 Sep 2021
Fast TreeSHAP: Accelerating SHAP Value Computation for Trees
Fast TreeSHAP: Accelerating SHAP Value Computation for Trees
Jilei Yang
FAtt
38
35
0
20 Sep 2021
Explaining Algorithmic Fairness Through Fairness-Aware Causal Path
  Decomposition
Explaining Algorithmic Fairness Through Fairness-Aware Causal Path Decomposition
Weishen Pan
Sen Cui
Jiang Bian
Changshui Zhang
Fei Wang
CML
FaML
27
33
0
11 Aug 2021
Sample Observed Effects: Enumeration, Randomization and Generalization
Sample Observed Effects: Enumeration, Randomization and Generalization
Andre F. Ribeiro
CML
21
4
0
09 Aug 2021
On Locality of Local Explanation Models
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
28
39
0
24 Jun 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
37
65
0
23 Jun 2021
Rational Shapley Values
Rational Shapley Values
David S. Watson
23
20
0
18 Jun 2021
A Framework for Evaluating Post Hoc Feature-Additive Explainers
A Framework for Evaluating Post Hoc Feature-Additive Explainers
Zachariah Carmichael
Walter J. Scheirer
FAtt
51
4
0
15 Jun 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
38
32
0
25 May 2021
Local Explanations via Necessity and Sufficiency: Unifying Theory and
  Practice
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
22
63
0
27 Mar 2021
The Shapley Value of coalition of variables provides better explanations
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
FAtt
TDI
27
5
0
24 Mar 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive
  Counterfactuals
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
30
105
0
22 Mar 2021
Ensembles of Random SHAPs
Ensembles of Random SHAPs
Lev V. Utkin
A. Konstantinov
FAtt
16
20
0
04 Mar 2021
MDA for random forests: inconsistency, and a practical solution via the
  Sobol-MDA
MDA for random forests: inconsistency, and a practical solution via the Sobol-MDA
Clément Bénard
Sébastien Da Veiga
Erwan Scornet
52
49
0
26 Feb 2021
Shapley values for feature selection: The good, the bad, and the axioms
Shapley values for feature selection: The good, the bad, and the axioms
D. Fryer
Inga Strümke
Hien Nguyen
FAtt
TDI
6
190
0
22 Feb 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
53
243
0
21 Nov 2020
Towards Unifying Feature Attribution and Counterfactual Explanations:
  Different Means to the Same End
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
29
100
0
10 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
33
0
06 Nov 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
  Predictions of Complex Models
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
16
151
0
03 Nov 2020
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
28
88
0
27 Oct 2020
Local Post-Hoc Explanations for Predictive Process Monitoring in
  Manufacturing
Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing
Nijat Mehdiyev
Peter Fettke
16
11
0
22 Sep 2020
On the Tractability of SHAP Explanations
On the Tractability of SHAP Explanations
Guy Van den Broeck
A. Lykov
Maximilian Schleich
Dan Suciu
FAtt
TDI
22
260
0
18 Sep 2020
Explaining predictive models with mixed features using Shapley values
  and conditional inference trees
Explaining predictive models with mixed features using Shapley values and conditional inference trees
Annabelle Redelmeier
Martin Jullum
K. Aas
FAtt
TDI
11
19
0
02 Jul 2020
Opportunities and Challenges in Explainable Artificial Intelligence
  (XAI): A Survey
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
42
593
0
16 Jun 2020
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A
  Top-Down Approach
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A Top-Down Approach
A. Moawad
E. Islam
Namdoo Kim
R. Vijayagopal
A. Rousseau
Wei Biao Wu
31
5
0
15 Jun 2020
Model-agnostic Feature Importance and Effects with Dependent Features --
  A Conditional Subgroup Approach
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Christoph Molnar
Gunnar Konig
B. Bischl
Giuseppe Casalicchio
33
77
0
08 Jun 2020
An explanation method for Siamese neural networks
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
27
14
0
18 Nov 2019
Feature relevance quantification in explainable AI: A causal problem
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
24
279
0
29 Oct 2019
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
21
180
0
14 Oct 2019
Previous
12