ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.11245
  4. Cited By
On Attribution of Recurrent Neural Network Predictions via Additive
  Decomposition

On Attribution of Recurrent Neural Network Predictions via Additive Decomposition

27 March 2019
Mengnan Du
Ninghao Liu
Fan Yang
Shuiwang Ji
Helen Zhou
    FAtt
ArXiv (abs)PDFHTML

Papers citing "On Attribution of Recurrent Neural Network Predictions via Additive Decomposition"

22 / 22 papers shown
PromptExp: Multi-granularity Prompt Explanation of Large Language Models
PromptExp: Multi-granularity Prompt Explanation of Large Language Models
Ximing Dong
Shaowei Wang
Dayi Lin
Gopi Krishnan Rajbahadur
Boquan Zhou
Shichao Liu
Ahmed E. Hassan
AAMLLRM
388
4
0
16 Oct 2024
Beyond 5G Network Failure Classification for Network Digital Twin Using
  Graph Neural Network
Beyond 5G Network Failure Classification for Network Digital Twin Using Graph Neural Network
Abubakar Isah
I. Aliyu
Jaechan Shim
Hoyong Ryu
Jinsul Kim
153
1
0
06 Jun 2024
PEACH: Pretrained-embedding Explanation Across Contextual and
  Hierarchical Structure
PEACH: Pretrained-embedding Explanation Across Contextual and Hierarchical Structure
Feiqi Cao
S. Han
Hyunsuk Chung
207
0
0
21 Apr 2024
SIDU-TXT: An XAI Algorithm for NLP with a Holistic Assessment Approach
SIDU-TXT: An XAI Algorithm for NLP with a Holistic Assessment ApproachNatural Language Processing Journal (JNLP), 2024
M. N. Jahromi
Satya M. Muddamsetty
Asta Sofie Stage Jarlner
Anna Murphy Hogenhaug
Thomas Gammeltoft-Hansen
T. Moeslund
292
7
0
05 Feb 2024
Explainability for Large Language Models: A Survey
Explainability for Large Language Models: A SurveyACM Transactions on Intelligent Systems and Technology (ACM TIST), 2023
Haiyan Zhao
Hanjie Chen
Fan Yang
Ninghao Liu
Huiqi Deng
Hengyi Cai
Shuaiqiang Wang
D. Yin
Jundong Li
LRM
465
706
0
02 Sep 2023
Improving Interpretability via Explicit Word Interaction Graph Layer
Improving Interpretability via Explicit Word Interaction Graph LayerAAAI Conference on Artificial Intelligence (AAAI), 2023
Arshdeep Sekhon
Hanjie Chen
A. Shrivastava
Zhe Wang
Yangfeng Ji
Yanjun Qi
AI4CEMILM
362
7
0
03 Feb 2023
Truthful Meta-Explanations for Local Interpretability of Machine
  Learning Models
Truthful Meta-Explanations for Local Interpretability of Machine Learning Models
Ioannis Mollas
Nick Bassiliades
Grigorios Tsoumakas
177
5
0
07 Dec 2022
On the Bias-Variance Characteristics of LIME and SHAP in High Sparsity
  Movie Recommendation Explanation Tasks
On the Bias-Variance Characteristics of LIME and SHAP in High Sparsity Movie Recommendation Explanation Tasks
Claudia V. Roberts
Ehtsham Elahi
Ashok Chandrashekar
FAtt
189
5
0
09 Jun 2022
Developing a Fidelity Evaluation Approach for Interpretable Machine
  Learning
Developing a Fidelity Evaluation Approach for Interpretable Machine Learning
M. Velmurugan
Chun Ouyang
Catarina Moreira
Prerna Agarwal
XAI
192
16
0
16 Jun 2021
LioNets: A Neural-Specific Local Interpretation Technique Exploiting
  Penultimate Layer Information
LioNets: A Neural-Specific Local Interpretation Technique Exploiting Penultimate Layer Information
Ioannis Mollas
Nick Bassiliades
Grigorios Tsoumakas
156
8
0
13 Apr 2021
Explaining Neural Network Predictions on Sentence Pairs via Learning
  Word-Group Masks
Explaining Neural Network Predictions on Sentence Pairs via Learning Word-Group MasksNorth American Chapter of the Association for Computational Linguistics (NAACL), 2021
Hanjie Chen
Song Feng
Jatin Ganhotra
H. Wan
Chulaka Gunasekara
Sachindra Joshi
Yangfeng Ji
242
21
0
09 Apr 2021
Local Interpretations for Explainable Natural Language Processing: A
  Survey
Local Interpretations for Explainable Natural Language Processing: A SurveyACM Computing Surveys (CSUR), 2021
Siwen Luo
Michal Guerquin
S. Han
Josiah Poon
MILM
405
64
0
20 Mar 2021
Evaluating Explainable Methods for Predictive Process Analytics: A
  Functionally-Grounded Approach
Evaluating Explainable Methods for Predictive Process Analytics: A Functionally-Grounded Approach
M. Velmurugan
Chun Ouyang
Catarina Moreira
Prerna Agarwal
XAI
196
6
0
08 Dec 2020
Altruist: Argumentative Explanations through Local Interpretations of
  Predictive Models
Altruist: Argumentative Explanations through Local Interpretations of Predictive Models
Ioannis Mollas
Nick Bassiliades
Grigorios Tsoumakas
195
13
0
15 Oct 2020
Joint learning of interpretation and distillation
Joint learning of interpretation and distillation
Jinchao Huang
Guofu Li
Zhicong Yan
Fucai Luo
Shenghong Li
FedMLFAtt
86
1
0
24 May 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Helen Zhou
AAML
203
8
0
23 Apr 2020
Distance and Equivalence between Finite State Machines and Recurrent
  Neural Networks: Computational results
Distance and Equivalence between Finite State Machines and Recurrent Neural Networks: Computational results
Reda Marzouk
C. D. L. Higuera
181
8
0
01 Apr 2020
Graph Markov Network for Traffic Forecasting with Missing Data
Graph Markov Network for Traffic Forecasting with Missing DataTransportation Research Part C: Emerging Technologies (TRC), 2019
Zhiyong Cui
Longfei Lin
Ziyuan Pu
Yinhai Wang
AI4TS
136
105
0
10 Dec 2019
Fairness in Deep Learning: A Computational Perspective
Fairness in Deep Learning: A Computational PerspectiveIEEE Intelligent Systems (IEEE Intell. Syst.), 2019
Mengnan Du
Fan Yang
Na Zou
Helen Zhou
FaMLFedML
190
256
0
23 Aug 2019
Learning Credible Deep Neural Networks with Rationale Regularization
Learning Credible Deep Neural Networks with Rationale RegularizationIndustrial Conference on Data Mining (IDM), 2019
Mengnan Du
Ninghao Liu
Fan Yang
Helen Zhou
FaML
273
47
0
13 Aug 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine
  Learning
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Helen Zhou
XAIELM
200
77
0
16 Jul 2019
Techniques for Interpretable Machine Learning
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Helen Zhou
FaML
470
1,192
0
31 Jul 2018
1