ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.02399
  4. Cited By
Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for
  Text Modeling
v1v2v3v4 (latest)

Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling

4 April 2019
P. Wang
William Yang Wang
    DRL
ArXiv (abs)PDFHTML

Papers citing "Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling"

18 / 18 papers shown
A Robust Autoencoder Ensemble-Based Approach for Anomaly Detection in
  Text
A Robust Autoencoder Ensemble-Based Approach for Anomaly Detection in Text
Jeremie Pantin
Christophe Marsala
132
1
0
16 May 2024
Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing
Optimal Transport Posterior Alignment for Cross-lingual Semantic ParsingTransactions of the Association for Computational Linguistics (TACL), 2023
Tom Sherborne
Tom Hosking
Mirella Lapata
OT
271
6
0
09 Jul 2023
Fusing Multimodal Signals on Hyper-complex Space for Extreme Abstractive
  Text Summarization (TL;DR) of Scientific Contents
Fusing Multimodal Signals on Hyper-complex Space for Extreme Abstractive Text Summarization (TL;DR) of Scientific ContentsKnowledge Discovery and Data Mining (KDD), 2023
Yash Kumar Atri
Vikram Goyal
Tanmoy Chakraborty
207
16
0
24 Jun 2023
Partial Counterfactual Identification of Continuous Outcomes with a
  Curvature Sensitivity Model
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity ModelNeural Information Processing Systems (NeurIPS), 2023
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
532
13
0
02 Jun 2023
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing FlowsJournal of Open Source Software (JOSS), 2023
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
249
82
0
26 Jan 2023
Operator Autoencoders: Learning Physical Operations on Encoded Molecular
  Graphs
Operator Autoencoders: Learning Physical Operations on Encoded Molecular Graphs
Willis Hoke
D. Shea
S. Casey
AI4CE
187
1
0
26 May 2021
Continuous Conditional Generative Adversarial Networks (cGAN) with
  Generator Regularization
Continuous Conditional Generative Adversarial Networks (cGAN) with Generator Regularization
Yufeng Zheng
Yunkai Zhang
Zeyu Zheng
GAN
138
10
0
27 Mar 2021
Deep Graph Generators: A Survey
Deep Graph Generators: A SurveyIEEE Access (IEEE Access), 2020
Faezeh Faez
Yassaman Ommi
M. Baghshah
Hamid R. Rabiee
GNNAI4CE
250
67
0
31 Dec 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDLAI4CE
233
93
0
18 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural
  data
Manifold GPLVMs for discovering non-Euclidean latent structure in neural dataNeural Information Processing Systems (NeurIPS), 2020
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
247
34
0
12 Jun 2020
On the Encoder-Decoder Incompatibility in Variational Text Modeling and
  Beyond
On the Encoder-Decoder Incompatibility in Variational Text Modeling and BeyondAnnual Meeting of the Association for Computational Linguistics (ACL), 2020
Chen Henry Wu
P. Wang
Wenjie Wang
DRL
120
4
0
20 Apr 2020
Latent Variable Modelling with Hyperbolic Normalizing Flows
Latent Variable Modelling with Hyperbolic Normalizing FlowsInternational Conference on Machine Learning (ICML), 2020
A. Bose
Ariella Smofsky
Renjie Liao
Prakash Panangaden
William L. Hamilton
DRL
267
75
0
15 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and SpheresInternational Conference on Machine Learning (ICML), 2020
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
301
172
0
06 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and InferenceJournal of machine learning research (JMLR), 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
741
2,083
0
05 Dec 2019
On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs
On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs
Teng Long
Yanshuai Cao
Jackie C.K. Cheung
153
7
0
10 Nov 2019
Neural Gaussian Copula for Variational Autoencoder
Neural Gaussian Copula for Variational AutoencoderConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
P. Wang
William Yang Wang
BDLDRL
140
15
0
09 Sep 2019
Normalizing Flows: An Introduction and Review of Current Methods
Normalizing Flows: An Introduction and Review of Current Methods
I. Kobyzev
S. Prince
Marcus A. Brubaker
TPMMedIm
249
58
0
25 Aug 2019
Conditional Flow Variational Autoencoders for Structured Sequence
  Prediction
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDLDRLAI4TS
231
93
0
24 Aug 2019
1
Page 1 of 1