Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.02841
Cited By
Minimum Uncertainty Based Detection of Adversaries in Deep Neural Networks
5 April 2019
Fatemeh Sheikholeslami
Swayambhoo Jain
G. Giannakis
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimum Uncertainty Based Detection of Adversaries in Deep Neural Networks"
8 / 8 papers shown
Title
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
40
1
0
02 Aug 2022
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
30
66
0
26 Jul 2021
A Sweet Rabbit Hole by DARCY: Using Honeypots to Detect Universal Trigger's Adversarial Attacks
Thai Le
Noseong Park
Dongwon Lee
10
23
0
20 Nov 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Non-Intrusive Detection of Adversarial Deep Learning Attacks via Observer Networks
K. Sivamani
R. Sahay
Aly El Gamal
AAML
6
3
0
22 Feb 2020
Test Selection for Deep Learning Systems
Wei Ma
Mike Papadakis
Anestis Tsakmalis
Maxime Cordy
Yves Le Traon
OOD
21
91
0
30 Apr 2019
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
1