Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.03867
Cited By
v1
v2 (latest)
Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability
8 April 2019
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability"
18 / 18 papers shown
Title
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
Lennart Schneider
B. Bischl
Janek Thomas
96
7
0
17 Jul 2023
Improving Interpretability via Explicit Word Interaction Graph Layer
Arshdeep Sekhon
Hanjie Chen
A. Shrivastava
Zhe Wang
Yangfeng Ji
Yanjun Qi
AI4CE
MILM
70
6
0
03 Feb 2023
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives
Matthias Feurer
Katharina Eggensperger
Eddie Bergman
Florian Pfisterer
B. Bischl
Frank Hutter
116
5
0
08 Dec 2022
Comparing Explanation Methods for Traditional Machine Learning Models Part 1: An Overview of Current Methods and Quantifying Their Disagreement
Montgomery Flora
Corey K. Potvin
A. McGovern
Shawn Handler
FAtt
97
18
0
16 Nov 2022
DALE: Differential Accumulated Local Effects for efficient and accurate global explanations
Vasilis Gkolemis
Theodore Dalamagas
Christos Diou
56
13
0
10 Oct 2022
From plane crashes to algorithmic harm: applicability of safety engineering frameworks for responsible ML
Shalaleh Rismani
Renee Shelby
A. Smart
Edgar W. Jatho
Joshua A. Kroll
AJung Moon
Negar Rostamzadeh
106
42
0
06 Oct 2022
Explainability in Process Outcome Prediction: Guidelines to Obtain Interpretable and Faithful Models
Alexander Stevens
Johannes De Smedt
XAI
FaML
113
14
0
30 Mar 2022
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
250
514
0
13 Jul 2021
Explainable Artificial Intelligence Approaches: A Survey
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
Mohiuddin Ahmed
XAI
87
104
0
23 Jan 2021
CDT: Cascading Decision Trees for Explainable Reinforcement Learning
Zihan Ding
Pablo Hernandez-Leal
G. Ding
Changjian Li
Ruitong Huang
65
21
0
15 Nov 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
114
405
0
19 Oct 2020
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
91
471
0
31 Jul 2020
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
85
138
0
08 Jul 2020
What Would You Ask the Machine Learning Model? Identification of User Needs for Model Explanations Based on Human-Model Conversations
Michal Kuzba
P. Biecek
HAI
55
22
0
07 Feb 2020
Towards Quantification of Explainability in Explainable Artificial Intelligence Methods
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
XAI
82
43
0
22 Nov 2019
Multi-Objective Automatic Machine Learning with AutoxgboostMC
Florian Pfisterer
Stefan Coors
Janek Thomas
B. Bischl
65
17
0
28 Aug 2019
Proposed Guidelines for the Responsible Use of Explainable Machine Learning
Patrick Hall
Navdeep Gill
N. Schmidt
SILM
XAI
FaML
77
29
0
08 Jun 2019
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Summer Devlin
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
62
14
0
18 May 2019
1