ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.05207
  4. Cited By
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features

Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features

10 April 2019
Arno Solin
Manon Kok
ArXiv (abs)PDFHTML

Papers citing "Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features"

17 / 17 papers shown
Title
Asymptotic properties of Vecchia approximation for Gaussian processes
Asymptotic properties of Vecchia approximation for Gaussian processes
Myeongjong Kang
Florian Schafer
J. Guinness
Matthias Katzfuss
72
6
0
29 Jan 2024
A spectrum of physics-informed Gaussian processes for regression in
  engineering
A spectrum of physics-informed Gaussian processes for regression in engineering
E. Cross
T. Rogers
D. J. Pitchforth
S. Gibson
Matthew R. Jones
54
9
0
19 Sep 2023
Rao-Blackwellized Particle Smoothing for Simultaneous Localization and
  Mapping
Rao-Blackwellized Particle Smoothing for Simultaneous Localization and Mapping
Manon Kok
Arno Solin
Thomas B. Schon
43
6
0
06 Jun 2023
Gaussian Process Priors for Systems of Linear Partial Differential
  Equations with Constant Coefficients
Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
Marc Härkönen
Markus Lange-Hegermann
Bogdan Raiță
133
16
0
29 Dec 2022
Constraining Gaussian processes for physics-informed acoustic emission
  mapping
Constraining Gaussian processes for physics-informed acoustic emission mapping
Matthew R. Jones
T. Rogers
E. Cross
AI4CE
79
16
0
03 Jun 2022
On boundary conditions parametrized by analytic functions
On boundary conditions parametrized by analytic functions
Markus Lange-Hegermann
D. Robertz
54
5
0
06 May 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
44
3
0
03 Feb 2022
Spectrum Gaussian Processes Based On Tunable Basis Functions
Spectrum Gaussian Processes Based On Tunable Basis Functions
Wenqi Fang
Guanlin Wu
Jingjing Li
Ziyi Wang
Jiang Cao
Yang Ping
18
0
0
14 Jul 2021
Inference for Gaussian Processes with Matérn Covariogram on Compact
  Riemannian Manifolds
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
Didong Li
Wenpin Tang
Sudipto Banerjee
87
14
0
08 Apr 2021
Gaussian Process Regression constrained by Boundary Value Problems
Gaussian Process Regression constrained by Boundary Value Problems
Mamikon A. Gulian
A. Frankel
L. Swiler
72
25
0
22 Dec 2020
APIK: Active Physics-Informed Kriging Model with Partial Differential
  Equations
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
Jialei Chen
Zhehui Chen
Chuck Zhang
C. F. J. Wu
99
15
0
22 Dec 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
107
61
0
08 Nov 2020
Variational Autoencoding of PDE Inverse Problems
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
49
12
0
28 Jun 2020
Variational Orthogonal Features
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDLDRL
71
12
0
23 Jun 2020
A Survey of Constrained Gaussian Process Regression: Approaches and
  Implementation Challenges
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GPAI4CE
104
106
0
16 Jun 2020
Gaussian Process Manifold Interpolation for Probabilistic Atrial
  Activation Maps and Uncertain Conduction Velocity
Gaussian Process Manifold Interpolation for Probabilistic Atrial Activation Maps and Uncertain Conduction Velocity
Sam Coveney
C. Corrado
C. Roney
D. O'Hare
Steven E. Williams
M. OÑeill
Steven Niederer
R. Clayton
J. Oakley
Richard D. Wilkinson
64
41
0
22 Apr 2020
Deep kernel learning for integral measurements
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
62
7
0
04 Sep 2019
1