Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.08598
Cited By
Reducing Noise in GAN Training with Variance Reduced Extragradient
18 April 2019
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reducing Noise in GAN Training with Variance Reduced Extragradient"
27 / 27 papers shown
Title
Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
Minheng Xiao
Shi Bo
Zhizhong Wu
30
5
0
01 Aug 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
40
3
0
19 Mar 2024
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
32
14
0
25 May 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
26
10
0
15 Feb 2023
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
25
2
0
12 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
37
31
0
29 Aug 2022
On Scaled Methods for Saddle Point Problems
Aleksandr Beznosikov
Aibek Alanov
D. Kovalev
Martin Takáč
Alexander Gasnikov
22
4
0
16 Jun 2022
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim
Junghoon Seo
AAML
20
0
0
21 Feb 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
47
0
15 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
35
34
0
06 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
16
7
0
01 Feb 2022
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
14
40
0
16 Nov 2021
Extragradient Method:
O
(
1
/
K
)
O(1/K)
O
(
1/
K
)
Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Eduard A. Gorbunov
Nicolas Loizou
Gauthier Gidel
23
64
0
08 Oct 2021
Decentralized Local Stochastic Extra-Gradient for Variational Inequalities
Aleksandr Beznosikov
Pavel Dvurechensky
Anastasia Koloskova
V. Samokhin
Sebastian U. Stich
Alexander Gasnikov
26
43
0
15 Jun 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
31
60
0
29 Mar 2021
Training Generative Adversarial Networks by Solving Ordinary Differential Equations
Chongli Qin
Yan Wu
Jost Tobias Springenberg
Andrew Brock
Jeff Donahue
Timothy Lillicrap
Pushmeet Kohli
GAN
22
28
0
28 Oct 2020
Adaptive extra-gradient methods for min-max optimization and games
Kimon Antonakopoulos
E. V. Belmega
P. Mertikopoulos
54
46
0
22 Oct 2020
Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence
Alina Ene
Huy Le Nguyen
12
13
0
15 Oct 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
31
50
0
08 Jul 2020
Empirical Analysis of Overfitting and Mode Drop in GAN Training
Yasin Yazici
Chuan-Sheng Foo
Stefan Winkler
Kim-Hui Yap
V. Chandrasekhar
24
29
0
25 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
27
81
0
16 Jun 2020
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
ODL
30
63
0
26 Dec 2019
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
22
72
0
29 Oct 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
17
36
0
26 May 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
15
2
0
21 Mar 2019
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
17
323
0
24 Jan 2019
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1