Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.12072
Cited By
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
26 April 2019
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Flow-based generative models for Markov chain Monte Carlo in lattice field theory"
49 / 49 papers shown
Title
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
55
0
0
16 Apr 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
64
1
0
11 Mar 2025
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
80
0
0
17 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
65
3
0
10 Jan 2025
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
Lei Wang
K. Zhou
28
4
0
28 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
57
10
0
03 Oct 2024
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
46
2
0
04 Jun 2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
44
4
0
23 Mar 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
45
42
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
71
18
0
07 Feb 2024
Combining Normalizing Flows and Quasi-Monte Carlo
Charly Andral
BDL
37
1
0
11 Jan 2024
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
39
41
0
04 Oct 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
26
2
0
01 Jun 2023
Mutual information of spin systems from autoregressive neural networks
P. Białas
P. Korcyl
T. Stebel
32
3
0
26 Apr 2023
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
40
1
0
07 Apr 2023
Locality-constrained autoregressive cum conditional normalizing flow for lattice field theory simulations
R. DineshP.
AI4CE
22
0
0
04 Apr 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Jakob Robnik
U. Seljak
49
6
0
31 Mar 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
44
27
0
26 Jan 2023
fintech-kMC: Agent based simulations of financial platforms for design and testing of machine learning systems
Isaac Tamblyn
Tengkai Yu
Ian Benlolo
13
0
0
04 Jan 2023
Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions
Zhuo Chen
Di Luo
Kaiwen Hu
B. Clark
27
14
0
14 Dec 2022
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Yuma Ichikawa
Akira Nakagawa
Hiromoto Masayuki
Yuhei Umeda
BDL
18
0
0
25 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Blind Super-Resolution for Remote Sensing Images via Conditional Stochastic Normalizing Flows
Hanlin Wu
Ning Ni
Shan Wang
Li-bao Zhang
38
8
0
14 Oct 2022
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
49
9
0
13 Sep 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
29
11
0
25 Aug 2022
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
24
40
0
01 Jul 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
29
13
0
27 May 2022
Hierarchical autoregressive neural networks for statistical systems
P. Białas
P. Korcyl
T. Stebel
24
11
0
21 Mar 2022
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
27
27
0
11 Mar 2022
A Group-Equivariant Autoencoder for Identifying Spontaneously Broken Symmetries
Devanshu Agrawal
A. Del Maestro
Steven Johnston
James Ostrowski
DRL
AI4CE
36
2
0
13 Feb 2022
Gradient estimators for normalising flows
P. Białas
P. Korcyl
T. Stebel
BDL
27
3
0
02 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
37
46
0
31 Jan 2022
Predicting Physics in Mesh-reduced Space with Temporal Attention
Xu Han
Han Gao
Tobias Pfaff
Jian-Xun Wang
Liping Liu
AI4CE
21
73
0
22 Jan 2022
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
36
34
0
21 Jan 2022
Machine Learning Trivializing Maps: A First Step Towards Understanding How Flow-Based Samplers Scale Up
L. Debbio
Joe Marsh Rossney
Michael Wilson
16
6
0
31 Dec 2021
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
49
113
0
07 Dec 2021
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
42
41
0
04 Dec 2021
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
28
13
0
22 Nov 2021
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
AI4CE
19
35
0
06 Oct 2021
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Dian Wu
R. Rossi
Giuseppe Carleo
32
29
0
12 May 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
43
10
0
04 Feb 2021
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
31
178
0
02 Feb 2021
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
31
127
0
12 Aug 2020
Extending machine learning classification capabilities with histogram reweighting
Dimitrios Bachtis
Gert Aarts
B. Lucini
19
21
0
29 Apr 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
27
86
0
12 Feb 2020
A Probability Density Theory for Spin-Glass Systems
Gavin Hartnett
Masoud Mohseni
21
4
0
03 Jan 2020
1