Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.13335
Cited By
v1
v2
v3 (latest)
Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data
30 April 2019
Xin Du
Lei Sun
W. Duivesteijn
Alexander G. Nikolaev
Mykola Pechenizkiy
OOD
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data"
28 / 28 papers shown
Title
Orthogonal Representation Learning for Estimating Causal Quantities
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
OOD
BDL
136
2
0
06 Feb 2025
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
68
2
0
01 Mar 2024
Neural Causal Abstractions
K. Xia
Elias Bareinboim
CML
NAI
103
7
0
05 Jan 2024
Adversarially Balanced Representation for Continuous Treatment Effect Estimation
Amirreza Kazemi
Martin Ester
CML
OOD
91
3
0
17 Dec 2023
Adversarial Distribution Balancing for Counterfactual Reasoning
Stefan Schrod
Fabian H. Sinz
Michael Altenbuchinger
OOD
CML
88
1
0
28 Nov 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
79
10
0
19 Nov 2023
Towards Causal Foundation Model: on Duality between Causal Inference and Attention
Jiaqi Zhang
Joel Jennings
Agrin Hilmkil
Nick Pawlowski
Cheng Zhang
Chao Ma
CML
112
14
0
01 Oct 2023
Does Misclassifying Non-confounding Covariates as Confounders Affect the Causal Inference within the Potential Outcomes Framework?
Yonghe Zhao
Q. Huang
Shuai Fu
Huashan Sun
CML
32
0
0
22 Aug 2023
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference
Yonghe Zhao
Q. Huang
Siwei Wu
Yun Peng
Huashan Sun
BDL
CML
32
0
0
02 Aug 2023
De-confounding Representation Learning for Counterfactual Inference on Continuous Treatment via Generative Adversarial Network
Yonghe Zhao
Q. Huang
Haolong Zeng
Yun-Wen Pen
Huashan Sun
CML
OOD
BDL
38
2
0
24 Jul 2023
Advancing Counterfactual Inference through Nonlinear Quantile Regression
Shaoan Xie
Erdun Gao
Bin Gu
Tongliang Liu
Kun Zhang
92
1
0
09 Jun 2023
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
CML
72
12
0
30 Jan 2023
Deep Causal Learning for Robotic Intelligence
Yongqian Li
CML
73
5
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
119
11
0
07 Nov 2022
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
100
39
0
30 Sep 2022
A Survey of Deep Causal Models and Their Industrial Applications
Zongyu Li
Xiaoning Guo
Siwei Qiang
CML
AI4CE
76
8
0
19 Sep 2022
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects
Guanglin Zhou
Lina Yao
Xiwei Xu
Chen Wang
Liming Zhu
OOD
CML
BDL
57
2
0
13 Aug 2022
Estimating Causal Effects Under Image Confounding Bias with an Application to Poverty in Africa
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
CML
76
6
0
13 Jun 2022
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
99
76
0
21 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
115
30
0
02 Feb 2022
Cycle-Balanced Representation Learning For Counterfactual Inference
Guanglin Zhou
L. Yao
Xiwei Xu
Chen Wang
Liming Zhu
CML
OOD
38
12
0
29 Oct 2021
Estimating Potential Outcome Distributions with Collaborating Causal Networks
Tianhui Zhou
William E Carson IV
David Carlson
CML
208
8
0
04 Oct 2021
The Causal-Neural Connection: Expressiveness, Learnability, and Inference
K. Xia
Kai-Zhan Lee
Yoshua Bengio
Elias Bareinboim
CML
81
111
0
02 Jul 2021
Robust Orthogonal Machine Learning of Treatment Effects
Yiyan Huang
Cheuk Hang Leung
Qi Wu
Xing Yan
OOD
CML
57
0
0
22 Mar 2021
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
46
6
0
23 Nov 2020
Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
Yuta Saito
Shota Yasui
OOD
CML
26
8
0
11 Sep 2019
Reliable Estimation of Individual Treatment Effect with Causal Information Bottleneck
Sungyub Kim
Yong-Ho Baek
Sung Ju Hwang
Eunho Yang
CML
23
1
0
07 Jun 2019
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
263
288
0
09 Jul 2017
1